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Guest Sponsor Introduction
Ivo Bolsens, Chief Technology Officer, Xilinx

There is little doubt that this is a new era for FPGAs. 

While it is not news that FPGAs have been deployed in many different environments, particularly 
on the storage and networking side, there are fresh use cases emerging in part due to much 
larger datacenter trends. Energy efficiency, scalability, and the ability to handle vast volumes 
of streaming data are more important now than ever before. At a time when traditional CPUs 
are facing a future where Moore’s Law is less certain and other accelerators and custom ASICs 
are potential solutions with their own sets of expenses and hurdles, FPGAs are getting a serious 
second look for an ever-growing range of workloads.

FPGAs have always been a multi-market solution, but the market is more varied in terms of 
compute requirements, yet more homogenous than ever in terms of those basic requirements 
for efficiency, speed, scalability, and usability. A great deal of work has gone into improving the 
profile along every single one of these trajectories, not the least of which is programmability—
the assumed Achilles’ heel for reprogrammable devices, but to far less of a degree than ever in 
the history of FPGAs. 

In his fifteen years as FPGA maker Xilinx’s Chief Technology Officer, Ivo Bolsens has watched 
as reprogrammable devices have moved from being the glue logic to the heart of full systems. 
“This is because it is now possible to incorporate so many rich capabilities into the devices and 
governing software framework. In terms of the future, we think we have also made it clear that 
the broader compute world has an opportunity with FPGAs as well given larger trends in the 
datacenter, most notably performance per watt and overall scalability. Scaling up and down at 
the same time as having programmability mean more in the wake of these trends, and this of 
course maps well to FPGAs,” he explains. 

The goal for companies like Xilinx is to deliver high compute density and capability in an FPGA 
to meet these growing workload requirements. These two areas are the real starting point, 
especially as we look at emerging needs in both cloud and machine learning. Many applications 
in both of these spheres have data flow and streaming data processing needs, and this is exactly 
where FPGAs shine with less power consumption than other accelerator architectures or CPU only 
approaches. “This is because the data and compute are side by side without heavy, expensive 
data movement between memories—a feature that is most important for machine learning,” 
Bolsens notes.

These same aspects that make FPGAs an attractive fit for the emerging workloads map well to 
other areas where reprogrammable logic has a major role. Network processing, security, deep 
packet inspection are all important areas for FPGAs. Also on the horizon are even larger trends 
feeding more work to the FPGA in terms of adding greater levels of intelligence into both the 
network and storage layers. The opportunities here are huge; the ability to bring the compute 
closer to the storage and data for doing networking functions is a game-changing capability that 
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 CPUs cannot touch performance and efficiency-wise. The emerging 
trend toward network function virtualization alone represents a 
major opportunity for FPGAs in tandem with CPUs and although it 
is a different use case from machine learning, video transcoding, 
and other emerging workloads, it shows how and why the FPGA can 
hum against streaming data in a way other accelerators or CPU-only 
approaches cannot. 

The historical challenge for FPGAs entering into new and emerging 
markets has been the programming environment, but this problem 
is being solved by major step-changes. “Much of our research and 
development organization has been focused on the future of making 
reprogrammable devices programmable, and with OpenCL and 
critical insights we have had over the years to make these more 
approachable, we are now moving toward general purpose (in terms 
of usability) devices. To put this into some perspective, it is useful to 
understand where Xilinx began with FPGAs and where we are now 
for both the hardware and software end users of our devices,” says 
Bolsens 

The challenge ten years ago was to bridge the gap between the 
hardware and software sides of the development house. “We wanted 
to make sure it was possible to unleash the full potential of the 
hardware platform without exposing the software people to all of the 
gritty details of the underlying hardware, beginning with an effort 
to move from Verilog and HDL to higher level abstractions,” Bolsens 
recalls. “A decade ago, we actually had to sell this concept inside 
of Xilinx—this idea that we could build hardware with fewer lines of 
code and with a high-level synthesis approach that allowed us to see 
functions and map them into hardware. Ten years ago, this was not 
a need. Today it is, and we have responded.” 

So much has changed in terms of FPGA usability in the last decade 
that it is quite stunning to stop and see that big picture. If you are 
a software developer these days in a datacenter environment and 
you are writing your C++ programs to run in the cloud with FPGA 
acceleration it is now seamless. It is now no longer a major hurdle to 
run in a heterogeneous platform with your code running on the CPU, 
GPU, FPGA, or all of these together. You can now get the benefits of 
the FPGA without having to deal with the requirements of specialized 
knowledge about programming those FPGAs. This is a long way to 
have come for these disparate hardware and software people—from 
those beginnings to this more seamless environment. 

Of course, there is still a great deal of work to do. One of the things 
that is still missing for FPGAs compared to other accelerators—
and something companies like Xilinx understand they still need to 
address for some of the emerging workloads like machine learning 
and deep learning—is providing the libraries needed. “Today, people 
do not write software from scratch; they are using many libraries 
and compared to other platforms, this is where catching up needs 
to be done. The goal is to leverage our ecosystem and partners, and 
of course, leverage our in-house software expertise to build around 

“It has been a decade-
long journey; from 
selling the diehard 
hardware people to 
start using C to build 
hardware functions 
with fewer lines of code 
to now getting those 
people who are writing 
C++ code and want to 
have abstraction of all 
the hardware details.”
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this gap and ensure new application areas can quickly onboard with FPGA acceleration,” Bolsens 
says.

Even though we talk about programmability and the availability of key libraries, the biggest 
hurdle for FPGAs is also their most attractive point; they allow an immense amount of freedom. 
For those who are skilled in navigating FPGA use this is the benefit, along with performance 
per watt—this flexibility. However, that tremendous amount of programmability means the user 
experience can be more complex. As Bolsen explains, “There are many ways to mess up but we 
are addressing this with additional investments in templates to make developers as efficient and 
productive as possible in key domains so they can adhere to best practices, avoid mistakes, and 
get around otherwise longer efforts riding a learning curve.”

What sets FPGAs apart is not only the flexibility, energy efficiency, and price-performance profile we 
have described, but also the fact that FPGA makers understand interconnects better than anyone 
else in the semiconductor world. “We understand how to build an interconnect infrastructure that 
is programmable, can connect any function to any other function by programming a device, and 
with that kind of infrastructure in place, the potential applications abound,” Bolsen notes. 

We look forward to witnessing where FPGAs find a place in the new world of applications that 
are being driven by big data and see a path to this internally. As we will highlight in the course 
of this book, there are numerous opportunities for emerging application areas and despite some 
roadblocks and challenges, there is great hope on the FPGA horizon. 
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Introduction

For most of the more than three decades that field programmable gate arrays have been available 
as compute elements, proponents of these exotic devices have been awaiting the day when all of 
the stars of technology and economics would align and their approach to creating logic devices 
would knock application-specific integrated circuits, or ASICs, out of favor.

It never happened, and we are all still waiting. But perhaps we are waiting for the wrong thing.

Not just because we like a good competitive battle between technologies and the fight for 
revenue and profits, but because the arguments that FPGA makers gave for why their devices 
should reign supreme had an elegance and a logical consistency to them. While FPGA makers 
originally downplayed the malleability of their devices, the idea that you can take a chip on the 
most advanced process nodes available and make it do anything just about any ASIC can do 
– that you can in essence recycle transistors and change the personality of the FPGA through 
something akin to, but not quite the same as, programming – is just plain appealing. And we 
believe it should have won over the market a long time ago, just like FPGA makers like Xilinx 
and Altera, also believed. The malleability of an FPGA should trump the raw circuit speeds and 
feeds of an ASIC.

The funny bit is that for a certain part of the computing workload in network and storage devices 
in the datacenter as well as consumer devices, FPGAs did carve out a slice. That is why we 
are able to even contemplate a larger role for FPGAs in compute within the datacenter today. 
Had there not been myriad smaller bits of computing that were best implemented on an FPGA 
because a dedicated ASIC was too expensive and because running that work as a bit of software 
on a generic CPU provided too low performance at too high of a cost, the FPGA market would 
never have coalesced at all.

Rather than kill the ASIC, the very existence of the FPGA alternative has performed a vital role in 
pushing workloads towards specialized ASICs, where functions are hard coded (like a switch chip), 
towards general purpose ASICs (like a Xeon processor) that implement functions in software, 
or towards a hybrid application-specific standard product (ASSP) system on chip device, which 
mixes fixed function ASICs with general purpose programmable ASICs like a processor. The 
lines are considerably more blurred when you consider that what we call FPGAs are actually an 
amalgamation of an FPGA plus other ASICs like a Power or ARM processor, providing both the 
malleability of the FPGA and the programmability of the CPU all in the same package.

To a certain way of looking at it, the hybrid world that we are contemplating in the compute 
portion of the datacenter has already happened at a smaller scale of system on chip devices 
that are used in a range of commercial and consumer machines. The reason is simple: They are 
power constrained and cost constrained, or both, and they need the various attributes of multiple 
kinds of compute devices. In some cases, a machine is mixing all four kinds of compute – CPU, 
FPGA, GPU, and DSP – although not on a single device. At least not yet. But the mix is necessary 
to provide the most efficient machine possible given power and budget constraints. What has 
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applied to an Apple iPhone for years applies equally well to a compute farm or a datacenter, and 
this is not particularly surprising. Sooner or later, the Moore’s Law limits that have shaped the 
engineering of our smartphones was going to shape the engineering of our datacenters. We can 
make datacenters bigger, to be sure, but we can’t get dozens of megawatts of power to them. 
Just like we can make a smartphone bigger, but we want something that fits in our hands and 
that has a battery life of at least a day as it does more and more sophisticated things with each 
successive generation.

Because of this, and because of the deep experience that network equipment makers and storage 
array makers have with FPGAs already, we think the time is ripe and right for FPGAs to take their 
rightful place in datacenter compute. In this and successive chapters, we will endeavor to look 
at where FPGAs will mesh with existing and emerging applications with an emphasis on their 
potential role in enterprise, machine learning, and other forward-looking applications. In short, 
those areas that surpass the traditional role of FPGAs in networks, storage, and other gear. 
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Chapter One: 
The FPGA Market: Past, Present, and Future

The FPGA has a time to market and cost advantage over specialized ASICs and a performance 
advantage in most cases compared to running software atop CPUs to perform certain functions, 
and that is why we think they will be sprinkled around the datacenter in server, switching, and 
storage layers and accelerating functions all throughout the workflow.

It is important to not get overly excited, however. Particularly with Intel shelling out $16.7 billion 
in December 2015 to buy FPGA maker Altera. In late 2014, when Altera was a public company, 
the company’s top brass pegged the parallel computing opportunity in the datacenter at around 
$1 billion for hybrid machines that mixed CPUs and FPGAs, compared to around $250 million for 
hybrid CPU-GPU machines and around $9 billion for processors running applications directly on 
CPUs.

The interesting bit about the comparison that Altera made is that it put ease of programming 
and energy efficiency of the compute elements on the Y and X axis, as shown above. People are 
familiar with CPUs, of course, and finding a C programmer is not too difficult, so there is not much 
risk or pain in using straight up CPUs to perform computing tasks. But the energy efficiency is 
relatively low, particularly for workloads that are compute intensive and inherently parallel. The 
CPU-GPU hybrid is less familiar to programmers but the combination is considerably more power 
efficient. By Altera’s estimation, programming a hybrid CPU-FPGA system using OpenCL is easier 
for programmers than use Nvidia’s CUDA environment (something that is arguable for sure), but 
hard coding the FPGAs in HDL is quite difficult and hence the need for OpenCL or some other 
abstraction layer to automate the offloading of functions from the CPU to the FPGA. (The GPU 
and FPGA opportunities in the chart above do not include the revenues derived from the CPUs, 
by the way. And Nvidia’s sales of Tesla GPU accelerators are considerably larger in now while CPU 
revenues have not grown nearly as fast.)

That $1 billion datacenter opportunity includes sales by Altera, Xilinx, and other FPGA suppliers, 
and it meshes more or less with the way Intel cased the market in June 2015 when it made the 
deal to buy Altera. In 2014, ahead of the Intel acquisition, 16 percent of Altera’s $1.9 billion 
revenues came from the compute, network, and storage business that is related to datacenters, 
which works out to $304 million. Telecom and wireless equipment makers, who make systems 
that stay in the field for one or two decades and who want power efficiency, low cost, and the kind 
of malleability that FPGAs provide without needing an operating system or the software overhead 
of a CPU for those functions, comprised 44 percent Altera’s sales, or $835 million. Another 22 
percent of Altera’s revenues, or $418 million, came from makers of industrial controls, military 
equipment, and automobiles, which have the same constraints and therefore choose FPGAs for 
some of their workloads.

At the time, Intel pegged the total addressable market for all kinds of chips at $115 billion for all 
of 2014, with programmable logic devices (dominated by FPGAs) accounting for about 4 percent 
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of the pie, ASICs at 18 percent, and the remainder being the hodge podge of ASSPs. Within the 
programmable logic devices segment, Intel reckoned Altera had 39 percent of the $4.8 billion 
market, with Xilinx getting 49 percent and a handful of other vendors brining in the remaining 
12 percent.

Intel did not buy Altera just because the FPGA business is growing almost as fast as its own Data 
Center Group, which supplies chips, chipsets, and motherboards to makers of servers, storage, 
and switches. Intel did so because as Moore’s Law is slowing down, FPGAs are more and more 
of a competitive threat. Each FPGA accelerator – and indeed, any GPU or DSP accelerator – that 
is installed in a datacenter is not just one, but probably a couple of Xeon CPUs that are not 
going to be installed. Intel can’t keep making Xeons bigger and bigger with more cores and 
more accelerators on them, and so it must have therefore concluded that it needs to have FPGA 
acceleration in its own right. It is better to sell $500 million in FPGAs in the datacenter today and 
maybe $1 billion or more of them years hence and sacrifice perhaps two or three times that in 
Xeon revenues than just lose the Xeon revenues to someone else.

According to Intel’s forecasts, the company is projecting a fairly linear growth rate for the FPGA 
business between now and 2023, and we are always suspicious of such linear forecasting. But 
the FPGA business has grown more or less over time (it is about 2.5X larger than it was fifteen 
years ago) and Intel expects it to almost double between 2014 and 2023. With a compound 
annual growth rate of 7 percent between 2014 and 2023 as Intel is forecasting, the revenues 
should be just shy of $8.9 billion at the end of the forecast period. Interestingly, Intel’s forecast 
is not projecting that the share of FPGA revenues from datacenter compute (servers, switching, 
and networking) is going to change by much. Take a look:

If market shares didn’t change between Altera and Xilinx, and the portion of Altera’s revenues 
remained the same for networking, compute, and storage, then this piece of the Altera business 
would be somewhere around $560 million in 2023. We think that such a number underestimates 
the pressure that datacenters will be under to provide more efficient and flexible computing, 
and that the prospects for FPGAs are considerably better than this forecast suggests. That said, 
many proponents of FPGA technology have been waiting for the day when the FPGA would get 
its rightful share of compute in the datacenter, and we think they will be pleasantly surprised to 
find it happening soon. The irony is that Intel itself, which is an expert in programming FPGAs 
and using hardware description languages by virtue of its role as an ASIC manufacturer, will 
be accelerating the adoption of FPGAs as accelerators, both as free-standing discrete compute 
elements and as hybrid CPU-FPGA devices.

It is difficult not to place too much emphasis on the Intel, Altera news from 2016 since it portends 
massive growth for FPGAs. This can do nothing other than serve the other FPGA makers, few as 
they are—at least in the short term.

Intel’s acquisition and subsequent statements about the potential for FPGAs for a growing range 
of workloads is worth exploring in some detail, which we will do to set the stage for the rest 
of this book. That acquisition marks a defining event for the future of FPGAs as it shows Intel 
recognizes the vast potential. Just as other moves by major companies show, including Amazon 
Web Services, which is providing Xilinx FPGAs with the expectation of big market momentum, 
the future of FPGAs as compute accelerators is strong. 

Accelerating workloads in the enterprise, boosting search inside of hyperscale datacenters, and 
goosing the performance of HPC simulations are all hot areas for FPGAs. The addition of machine 
learning and deep learning to the application ranks marks another line that FPGAs can cross for 
a stronger 2017. As we will detail throughout the course of this book, this is happening for a few 
reasons. 
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First, the software stacks for programming FPGAs have evolved, and Altera in particularly has 
been instrumental in grafting support for FPGAs onto the OpenCL development environment that 
was originally created to program GPUs and then was tweaked to allow it to turn GPUs into offload 
engines for CPUs. (Not everyone is a big fan of OpenCL. Nvidia has created its own CUDA parallel 
programming environment for its Tesla GPU accelerators, and also in mid-2016, SRC Computers, 
a company that has been delivering hybrid CPU-FPGA systems in the defense and intelligence 
industries since 2002, launched into the commercial market with its own Carte programming 
environment, which turns C and Fortran programs into the FPGA’s hardware description language 
(HDL) automatically.

The other factor that is driving FPGA adoption is the fact that getting more performance out of 
a multicore CPU is getting harder and harder as the process shrink jumps get smaller for chip 
manufacturing techniques. Performance jumps are being made, but mostly in expanding the 
performance throughput of CPUs, not the individual performance of a single CPU core. (There are 
some hard-fought architectural enhancements, we know.) But both FPGA and GPU accelerators 
offer a more compelling improvement in performance per watt. Hybrid CPU-FPGA and CPU-GPU 
systems can offer similar performance and performance per watt, at least according to tests 
that Microsoft has ran, on deep learning algorithms. The GPUs run hotter, but they do roughly 
proportionally more work and at the system level, offer similar performance per watt.

That increase in performance per watt is why the world’s most powerful supercomputers moved 
to parallel clusters in the late 1990s and why they tend to be hybrid machines right now, although 
Intel’s massively parallel “Knights Landing” Xeon Phi processors are going to muscle in next to 
CPU-GPU hybrids. With Altera FPGA coprocessors and Knights Landing Xeon Phi processors, 
Intel can hold its own against the competition at the high end, which is shaping up to be the 
OpenPower collective that brings together IBM Power processors, Nvidia Tesla coprocessors, and 
Mellanox Technologies InfiniBand networking.

Intel has to believe that the workloads in the hyperscale, cloud, enterprise, and HPC markets will 
grow fast enough to let it still ramp its compute business, or that it has no choice but to be the 
seller of FPGAs or else someone else will be, or perhaps a little of both. But Intel is not talking 
about it this way.

“We do not consider this a defensive play or more,” Intel’s CEO, Brian Krzanich said in a press 
conference in the wake of the Altera acquisition news. “We look at this, in terms of both IoT and 
the datacenter, as expansive. These are products that our customers want built. We have said 
that 30 percent of the cloud workloads will be on these products as we exit this decade, and that 
is an estimate on our part on how we see trends moving and where we see the market going. 
This is about providing the capability to move those workloads down into the silicon, which is 
going to happen one way or another. We believe that it is best done with the Xeon processor-
FPGA combination, which will clearly have the best performance and cost for the industry. In IoT, 
it is about expanding into new available markets against ASICs and ASSPs, and with datacenter 
moving those workloads down into silicon and enabling the growth of the cloud overall.”

Krzanich explains, “You can think of an FPGA as a large sea of gates that they can program now. 
And so if they think that their algorithm will change over time as they learn and get smarter, 
or if they want to get to be more efficient and they don’t have enough volume to have a single 
workload on a single piece of silicon then they can use an FPGA as accelerators of multiple 
segments – doing facial search at the same time as doing encryption – and we can basically on-
the-fly reprogram this FPGA, literally within microseconds. That gives them a much lower cost 
and a much greater level of flexibility than a single customized part that you would need to have 
quite a bit of scale to need.
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 Intel sees a much larger opportunity than this, and CEO Brian 
Krzanich said when the deal was announced that up to a third of 
cloud service providers could be using hybrid CPU-FPGA server nodes 
for their workloads by 2020. This is an astounding statement, given 
that Altera itself pegged the FPGA opportunity in the datacenter at 
something around $1 billion in its own forecasts from late 2014. 
That’s about three times the current revenue run rate for Nvidia’s 
Tesla compute engines. Intel showed a prototype Xeon-FPGA chip 
that put the two devices on the same package back in early 2014, 
and the plan was to get it out the door by the end of 2016 with a 
ramp through 2017; the idea was to get a Xeon with FPGA circuits on 
the die “shortly after that,” as Data Center Group general manager 
Diane Bryant put it at the time. On the call announcing the Altera 
deal, Krzanich did not say anything about the timing of this Xeon-
FPGA device, but did say that Intel would create a hybrid Atom-
FPGA device aimed at the Internet of Things market that would be a 
monolithic die; Intel is examining if it needs to do a single-package 
hybrid in the interim based on Atoms and Altera FPGAs.

Not surprisingly, FPGAs were the hot topic of conversation in early 
2016 when Jason Waxman, general manager of Intel’s Cloud 
Infrastructure Group, participated in a conference call to talk about 
Intel’s datacenter business with the research analysts at Pacific 
Crest Securities. First off, Waxman confirmed that Intel is already 
sampling that hybrid Xeon-FPGA compute engine to key cloud service 
providers, although he did not name names or give out any of the 
specs on the device.

Importantly, Waxman spoke at length and clarified what is driving 
Intel to acquire Altera and jump into programmable computing 
devices. And Intel clearly wants to make FPGAs more mainstream, 
even if that might cannibalize some of its Xeon business in the 
datacenter. (We think because Intel believes that such cannibalization 
is inevitable, and the best way to control it is to make FPGAs part of 
the Xeon lineup.)

“I think there are a number of things that can go into the acquisition, 
and a number of them are beyond the Data Center Group,” Waxman 
said. “One is that there is an underlying core business that tends to 
be driven by manufacturing lead advantage, and we seem to have a 
pretty good handle on that, so there seems to be some good synergy 
there. There is also the Internet of Things Group that has a strong 
interest as well. But for us, one of the things that we started to see 
is that with the expansion of workloads that are done at massive 
scale – something like machine learning, certain network functions – 
there is increasingly interest in seeing how you, if you are doing it at 
scale, get a higher degree of performance. So we are on the cusp of 
realizing that if we can get some breakthroughs in performance, we 
can potentially take an FPGA from something that is a niche today 
in datacenter applications to something that is much more broad, 
and we see this as a great opportunity. In the Data Center Group, 
the synergy we see is taking the FPGA and making it a companion to 

“We see a path to 
accelerating machine 
learning, to accelerate 
storage encryption, 
to accelerate network 
functions. We know 
because we are 
very deep into those 
workloads and we now 
see the opportunity to 
do it. Now, FPGAs have 
traditionally been kind 
of difficult, limited to 
the far-out expertise, 
because you are writing 
RTL. We are a company 
that writes RTL all the 
time, so we can solve 
that problem.”
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 the CPU and expanding our silicon footprint and being able to solve 
problems for cloud service providers and other types of large-scale 
applications.”

The key applications where Intel thinks there is initial and presumably 
large demand for FPGA acceleration include machine learning, search 
engine indexing, encryption, and data compression. These tend to 
be very targeted use cases, not general purpose ones, as Waxman 
pointed out. These are the workloads that Krzanich was no doubt 
referring to when he said that a third of cloud service providers 
would be using FPGA acceleration within five years.

Everyone has been lamenting how difficult it is to program FPGAs, 
but Intel is not daunted by this, and without revealing too much 
about Intel’s plans, he did offer some insight into why and what 
possible actions it might take to make FPGAs more accessible.

“I think the thing that we have that is unique, that other people would 
not be able to go deliver, is the ability to understand those workloads 
and to be able to drive acceleration,” said Waxman.”We see a path 
to accelerating machine learning, to accelerate storage encryption, 
to accelerate network functions. We know because we are very deep 
into those workloads and we now see the opportunity to do it. Now, 
FPGAs have traditionally been kind of difficult, limited to the far-
out expertise, because you are writing RTL. We are a company that 
writes RTL all the time, so we can solve that problem. We can make 
it performant and we can lower that barrier to entry. The third piece 
is really the volume economics, and that is all about integration and 
manufacturing prowess. So we look at the barriers that have kept it 
a niche, and we have a path to overcome those barriers. We have 
some interesting plans and if things go well, we can talk about those 
at another time.”

For those of us who think that Intel is conceptualizing this as FPGAs 
replacing Xeons, Waxman put the kibosh on that idea entirely.

Any algorithms that need to be done repetitively and at high rates, 
are a natural for FPGAs, said Waxman, and we would add that 
any data manipulation or transformation that needs to be done at 
extreme low latency or on the wire is also a candidate.

Considering that Altera already makes system-on-chips that 
incorporate ARM processors and FPGAs, it is natural to think that 
Intel might be tempted to global replace ARM cores with X86 cores 
and do similar devices. But it doesn’t look like this will happen. First, 
on a call going over Intel’s financial results for the second quarter 
of 2016, Krzanich said that Intel was committed to supporting and 
enhancing these ARM-FPGA hybrids for Altera’s existing customers.

“I think the way that we view it is that we would actually be integrating 
some form of FPGA into a Xeon,” Waxman clarified even further. “We 
have talked publicly about doing a first generation in one package, 
but the way we will look at it going forward, depending on how things 
progress, would be on the same die. So we will be looking at what is 

“The workload or 
application is going to 
run on a CPU, and there 
will be an algorithm or a 
piece of it that will go on 
the FPGA,” he said. “So 
you are not going to run 
the entire application on 
an FPGA, and that is one 
of the things that I think 
sometimes people are 
wondering about. Is this 
thing a replacement for 
a Xeon CPU? It is really 
not, it is a companion 
to the CPU. Take image 
recognition. How does 
a computer identify 
the picture of a cat on 
Facebook – that’s the 
funny example. There 
is a lot of compute that 
goes behind that, but 
the actual application for 
machine learning runs 
on a Xeon CPU but there 
are certain algorithms 
that you are going to 
want to offload to an 
FPGA.”
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the right combination based on the customer feedback. And by the way, I would still expect to 
see there will be some systems where there won’t be integration, they will still do a system-level 
companion. We are not going to integrate every possible combination of Xeon with FPGAs. That 
would be prohibitive and we will find the right targets and balance in the market.”

While Altera’s toolset makes use of the OpenCL programming model  to get application code 
converted down to RTL, the native language of the FPGA, interestingly Intel does not think 
that the future success of FPGAs in the datacenter is predicated on improvements in OpenCL 
integration with RTL tools or more widespread adoption of OpenCL.

“It is not predicated on OpenCL,” Waxman said emphatically. “We do see OpenCL as a potential 
avenue that further broadens the applicability of FPGAs, but right now initial cloud deployments 
of FPGAs will probably be done by the more capable companies and none of them are asking us 
for OpenCL.”

Intel has plans to make it easier to program FPGAs, but Waxman was not at liberty to talk 
about them. He did hint, however, that what Intel could do is make an RTL library available 
to programmers so they could call routines deployed on FPGAs, pushing it down to form the 
gates that implement the application routines on the gates, rather than have them create those 
routines by themselves. This makes a certain amount of sense, and this is precisely what Convey, 
which is part of Micron Technology now, did with its FPGA-accelerated systems a few years ago. 

“I think there is a continuum of acceleration,” Waxman says. “And what happens is, in the 
beginning, you may not know exactly what you are trying to accelerate and you are experimenting 
a little bit, and in that phase of acceleration, you want something that is a little more general 
purpose. As you start to really home in on what you are trying to accelerate, you are going to 
want something that is more efficient, that has lower power and takes less space, and that is 
when you are going to move into an FPGA.”

Waxman then cited the work that Microsoft has done with FPGA acceleration on its “Catapult” 
system, which takes its Open Cloud Server and adds FPGA mezzanine cards as accelerators. We 
went over this research back in March, which shows how an FPGA device at 25 watts delivers 
better performance/watt than a set of servers using Nvidia Tesla K20 GPU accelerators at 235 
watts that were tested by Google running the same image recognition training algorithms.

As we have pointed out, we have no doubts about the performance numbers that Microsoft and 
Google posted, but applying performance to the discrete GPU or FPGA and gauging that against 
its own thermal profile is not fair. You have to look at this at the server node level, and if you 
do that, the FPGA-assisted Microsoft server at the system level is only moderately ahead of the 
servers Google tested using Tesla K20s. (Those were our estimates, based on images processed 
per second per watt.) And this Microsoft comparison does not take cost into account, and it 
should. What can be honestly said is that Microsoft’s Open Cloud Server does not have the juice 
or the cooling to use full-on Tesla GPUs. A real bakeoff would use GPU mezzanine cards somehow 
and include thermals, performance, and price.

But Waxman’s larger point in the discussion remains the same.

“At some point, you are really going to want that thing to scream, and you are going to want to 
do that in a much lower power envelope. That is what we are banking on – that more optimized 
approach is where an FPGA is going to pay off.”

The last thing to consider is that cloud business at Intel. These customers now represent about 
25 percent of Data Center Group’s revenue and in the aggregate their purchases are growing at 
about 25 percent per year. The overall Data Center Group business is projected to grow at 15 
percent in 2016 and into the next couple of years. Let’s do some math. Intel should post $16.6 
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 billion in revenues in the Data Center Group in 2016 if its plan works 
out. That’s around $4.1 billion for the cloud service providers (which 
includes cloud builders and hyperscalers using our language here 
at The Next Platform), and around $12.5 billion for the rest of Intel’s 
datacenter sales. So outside of the cloud, Intel’s business is growing 
at about 12 percent, or half the cloud rate. Intel needs to feed that 
cloud growth any way it can, and apparently FPGA capacity, even if it 
does cannibalize Xeon capacity a bit, is a better option for Intel than 
having GPU acceleration continue to grow as it has.

On the programming side, which is arguably one of the sticking 
points for wider FPGA adoption (unlike other accelerators with 
rich development ecosystems like CUDA for Nvidia GPUs), there 
is momentum to extend the ability for programmers to design at 
the C language level or using OpenCL versus the low-level models 
that plagued FPGA development in the past. But even with so 
many progressive points to mark wider adoption, FPGAs are still 
stranded just outside of mainstream adoption. We will explore this 
more thoroughly in our chapter on the programming problems and 
opportunities, but for now, this remains a sticking point. While we 
have talked to many of the vendors in this relatively small ecosystem, 
including Altera and Xilinx (the two major suppliers) about what still 
remains, according to long-time FPGA researcher, Russell Tessier, the 
glory days for FPGAs in terms of how they will hit the wider market 
are still ahead—and new developments across the board will mean 
broader adoption.

In his twenty years working with FPGAs, which he still does at 
the University of Massachusetts (he also had a stint at Altera and 
was founder of Virtual Machine Works, which Mentor Graphics 
acquired), he says there has been a slow transition from science 
project to enterprise reality for FPGAs. “A lot of this is because of key 
improvements in design tools, with designers better able to specify 
their designs at a high level in addition to having the vendor tools 
that can be better mapped to chips.” He adds that from a sheer 
volume perspective, the amount of logic inside the device means 
users are able to implement increasingly large functions, making 
them more attractive to a wider base.

There have been trends over last few years that are making these 
devices a bit easier, programmatically speaking, says Tessier. Xilinx 
currently encourages design at the C language level using its Vivado 
product. Altera also has an OpenCL environment it has developed. 
The key, Tessier says, is that “both companies are trying to create an 
environment where users can program in more familiar procedural 
languages like C and OpenCL rather than having to be RTL design 
experts in Verilog or VHDL—that’s a process that’s still progressing 
although there does seem to be more footing in the last few years 
that will help move things more into the mainstream.”

One of the real enabling factors for FPGAs will be solving some of the 
memory and data movement limitations of FPGAs by meshing them 

Until relatively recently, 
FPGAs had a reputation 
problem. And it was 
not exactly inaccurate, 
since for any large-scale 
implementations, they 
did require specialists 
to program and 
configure, which made 
them off-limits in many 
industries, even though 
financial services, oil 
and gas, and a few other 
segments found the 
costs necessary to gain 
speed and throughput 
for specific applications.
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with the chip and a hyper-fast interconnect. This capability might be one of the reasons some 
were certain the Altera and Intel talks would lead to a big purchase—the market would expand 
dramatically at that point and if large companies like Intel and IBM were properly motivated to 
push the software ecosystem for FPGAs further, the mainstreaming of the FPGA (which will likely 
not be as significant as GPUs, at least not yet) might happen sooner.

“Increased integration with standard core processors is certainly a key here,” Tessier explains. 
“The barriers in the past have been languages and tools and as those get better there will be 
new opportunities and work with the chip vendors does open some new doors.” Tessier says 
that because of these and other “mainstreaming” trends, the application areas for FPGAs will 
continue to grow, in large part because the way they’re being used is changing. For instance, 
while financial services shops were among the first to use FPGAs for doing financial trends and 
stock selection analysis, the use cases are expanding as that segment now has bigger devices 
that can solve larger problems—and can now be strung together in larger quantities. Aside from 
that, other new areas for FPGAs, including in DNA sequencing, security, and encryption, and 
some key machine learning tasks will likely find new uses for FPGAs.

Of course, we do expect FPGAs will start big—and find their way into some of the world’s largest 
cloud and hyperscale datacenters, a sentiment that Hamant Dhulla, VP of the datacenter division 
at Xilnix strongly agrees with. “Heterogeneous computing is no longer a trend, it’s a reality,” he 
told The Next Platform early in 2016 in the wake of the highly publicized Microsoft Catapult use 
cases for FPGAs (more on that later) and Intel’s acquisition of Altera and subsequent statements 
about where they see the future of FPGAs in the datacenter.

From machine learning, high performance computing, data analytics, and beyond, there is a new 
day dawning for FPGAs in a more diverse range of application areas. Highly parallel workloads 
that ca be contained in a small power envelope and take advantage of the growing amount of 
on-chip memory available on FPGAs are all in the sights of FPGA makers and potential end users. 
Dhulla says the market potential is large enough to upset the way Xilinx has looked at its own 
business. For several years, storage and networking dominated the FPGA user base, but within 
five years, the demand on the compute side will far outpace storage and networking—both of 
which are expected to continue along a steady growth line.

FPGAs are set to become a companion technology in some hyperscale datacenters, Dhulla says. 
“We are seeing that these datacenters are separated into ‘pods” or multiple racks of servers for 
specific workloads. For instance, some have pods set aside to do things like image resizing, as 
an example. Here they are finding a fit for FPGAs to accelerate this part of the workload.” In 
other hot areas for FPGAs, including machine learning, Dhulla says that they are operating as 
a “cooperating” accelerator with GPUs. “There is no doubt that for the training portion of many 
machine learning workloads GPUs are dominant. There is a lot of compute power needed here, 
just as with HPC, where the power envelope tradeoff is worth it for what is required.” But he says 
that these customers are buying tens or hundreds of GPUs instead of hundreds of thousands—
those large accelerator numbers are being used on the inference part of the machine learning 
pipeline—and that’s where the volume is. As we noted already, Nvidia is countering this with two 
separate GPUs (the M40 for training, the low-power M4 that plugs into pared down hyperscale 
servers) to counter this, but Dhulla believes FPGAs can still wick the power consumption lower 
and, by taking a PCIe approach, can snap into hyperscale datacenters as well.

Their SDAccel programming environment is making this more practical by offering a high-level 
interface to C, C++ and OpenCL, but the real path to pushing hyperscale and HPC adoption is 
through end user examples.
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When it comes to these early users that will set the stage for the next generation of FPGA use, 
Dhulla points to companies like Edico Genome, which we will discuss later in this book, and 
how they have shifted their thinking toward FPGAs for performance and efficiency reasons, 
aided in part by the increasing ease of adoption. Xilinx is also currently working with production 
customers in other areas, including historical compute-side workloads in oil and gas and finance. 
But the first inkling of where their compute acceleration business is going can be seen with early 
customers using Xilinx FPGAs in machine learning, image recognition and analysis, and security. 
For instance, on the deep packet inspection front, the FPGA sits in front and all the traffic goes 
through it, meaning it’s possible to look at each individual packet—a capability that will have 
implications in software-defined networking as well.

The real opportunity for FPGAs at scale lies in the cloud. Despite the clinging drawbacks of poor 
double-precision performance, overall price, and what is arguably a much trickier (albeit more 
exact) programming approach, FPGAs might have something going for them that discrete GPUs 
do not—a power profile that is primed for the cloud. If the FPGA vendors can convince end users 
that, for key workloads, their accelerators can offer a considerable performance boost (which 
they do in some cases), offer a programming environment that is on par complexity-wise with 
other accelerators (CUDA, for instance) by encouraging OpenCL development, and wick away 
the price concerns by offering FPGAs in the cloud, there could be hope on the horizon.

Of course, that hope is bolstered by the urge to snap FPGAs into ultra-dense servers inside 
cloud infrastructure versus selling on accelerated bare metal. This already happened for FPGAs 
in financial services, which is where they are a prime fit with their solid integer performance. 
But if they haven’t seen mass adoption elsewhere, it’s time to look to a new delivery box–not to 
mention some new application goodies to put inside.

Just as their GPU accelerator cousins are rallying around deep learning to make the leap to a 
broader set of users, particularly in the web-scale and cloud space, the FPGA set is seeing a 
real chance to invade the marketplace by tackling neural network and deep learning workloads. 
These new hosts of applications mean new markets and with the cloud removing some of the 
management overhead, it could mean broader adoption. Efforts to move this along are working 
in some key machine learning, neural network, and search applications. FPGAs are becoming 
more commonplace outside of the hyperscale context in areas like natural language processing 
(useful for a growing array of use cases from clinical settings to consumer services), medical 
imaging, deep packet inspection, and beyond.

Over the last year there have been a few highly publicized use cases highlighting the role of 
FPGAs for specific workloads, particularly in the deep learning and neural network spaces, as 
well as image recognition and natural language processing. For instance, Microsoft used FPGAs 
to give its Bing search service a 2X boost across 1,632 nodes and employed a creative 2D 
torus, high throughput network to support Altera FPGA-driven work. China’s search engine giant, 
Baidu, which is also a heavy user of GPUs for many of its deep learning and neural network tasks, 
is using FPGAs for the storage controller on a 2,000 petabyte array that ingests between 100 
terabytes to a petabyte per day. These and other prominent cases of large-scale datacenters 
using FPGAs, especially when they do so over GPUs, are bringing more attention to the single-
precision floating point performance per watt that FPGAs bring to the table.

While some use cases, including the Baidu example, featured GPUs as the compute accelerator 
and FPGAs on the storage end, Altera, Xilnix, Nallatech, and researchers from IBM on the 
OpenPower front were showcasing where FPGAs will shine for deep learning in the cloud. The 
takeaway from these use cases is that the speedups for key applications were hosted inside 
ultra-dense machines that would melt the Xeon if a GPU was placed in concert. For tight-packed 
systems, they are a viable choice on the thermal front and even though there might not be as 
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many algorithms where FPGAs can show off (compared to GPUs) this could be the beginning of 
a golden era for the coprocessors, especially now that there are CAPI and QPI hooks for taking 
advantage of shared memory on FPGA-boosted systems.

If you ask Altera, Xilinx, and others, this is happening because of what we can call the “three P’s 
of FPGA adoption” – performance, power, and price. In early 2016, we were able to sync up with 
several of the main FPGA vendors at the GPU Technology Conference (the irony) and co-located 
OpenPower Summit, where we heard quite a bit about the golden age of the FPGA—all brought 
about by the cloud. With an estimated 75 percent of all servers being sold to live a virtualized 
life, the market rationale is not difficult to see—but performance per watt is the real story, 
especially when compared to GPUs, says Mike Strickland, who directs the compute and storage 
group at Intel/Altera. That puts Strickland in direct contact with HPC and hyperscale shops and 
gives him an understanding of their architectural considerations.

Although FPGAs have the reputation of being expensive, at high volume they are on par with other 
accelerators, Strickland explained, pointing to Microsoft as a key example. However, he says that 
the efficiencies of the performance boost far outstrip GPUs for neural algorithms, which leads 
to additional savings. There are numerous charts and arts highlighting the price/performance 
potential of FPGAs in both bare metal and virtual environments, but the real question is that 
stubborn fourth “P’ – programming.

There are programming parallels that make the possibility of an FPGA boom more practical. 
Strickland estimates there are around 20,000 CUDA programmers in the world, which he says 
demonstrates the size of the potential OpenCL-based approach to coding for FPGAs. The CUDA and 
OpenCL models are quite a bit more similar than they have been in the past, but both accelerator 
programming frameworks come with a reasonably large learning curve. For developers to branch 
out to either GPUs or FPGAs means they must see the potential for big performance, efficiency, 
and other gains—and that’s the message the FPGA world is trying to push with its focus on deep 
learning and neural networks.

It is not unreasonable to see how key advancements might lead to FPGAs as a service in, for 
instance, the Amazon cloud. There are already GPU instance types available, which one could 
argue might lead to more testing and development with CUDA code for new workloads. For 
Altera or Xilinx to find their FPGAs offered on IaaS clouds could encourage more OpenCL and 
programming progress, and might prove to be an ultra-efficient accelerator addition for cloud 
providers hoping to provide users with a boost without high power and heat complications. We 
will talk more about this in a coming chapter that discusses how Amazon has sought to integrate 
FPGAs into its own future cloud offerings—and what it means to some companies whose software 
depends on FPGA acceleration in large-scale analytics and gene sequence analysis.

Without a simpler way to run complex deep learning and neural network code, all the potential 
power and acceleration boosts are lost on the market. During a presentation at GTC and the 
OpenPower Summit in early 2016, Manoj Roge, who directs the datacenter division of Xilinx, said 
that FPGAs stand to make gains in the near future for specialized workloads. This has always 
been the case (there are a few places where FPGAs do really well, on Monte Carlo simulations 
for instance), but the cloud is making access more practical and helping users onboard faster.

“We are in the age of software defined everything—to virtualize all elements of the datacenter 
from compute, storage and networking and deliver it as a service or cloud,” Roge said. “A lot 
has gone into virtualizing compute and storage, not as much on the networking side, but that’s 
where standards and a robust ecosystem come into play. There’s a need to build things with 
standards but some, including standardizing on X86, are not good for all workloads. Some are 
seeing how they can get speedups for specific workloads with FPGAs and GPUs.”
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The challenges, even for software-defined datacenters, still boil down to power and thermal 
density, something that multicore processors sought to tackle. “We need to rethink datacenter 
architecture so we can boost performance and reduce latency. The answer is heterogeneous 
architecture for specialized workloads.” The clearest path to accessing that future? To some, it 
appears to be via the cloud.
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Chapter Two
An FPGA Future in the Cloud

In the conference call announcing the deal for Altera, Intel CEO Brian Krzanich said that up to a 
third of cloud service providers. Intel’s plan is to get a Xeon processor and an Altera FPGA on the 
same chip package by the end of 2016 and ramp its production through 2017, with a follow-on 
product that actually puts the CPU and the FPGA circuits on the same die in monolithic fashion 
shortly after that. 

The workloads driving that kind of optimistic adoption are set to be varied, but with advances in 
programmability and capability, these estimates might be right on target.

While Intel might have stolen headlines at the beginning of 2016, the year ended with rival FPGA 
maker, Xilinx making big waves on the cloud front with its devices being outfitted in the Amazon 
cloud as part of a much larger planned program to open access in 2017 and beyond. 

The solution to the adoption problem, aside from some key programmability steps we will 
describe later, has been to make FPGAs available in a cloud environment—something that also 
helps reroute around the cost for those looking to experiment. As obvious of a move as this 
seems to be, the large cloud providers have been slow to make this happen. That is changing 
too, but we still have some time to go before both the hardware and tooling are on the same 
cloud platform for a larger range of developers and users.

FPGA makers are certainly seeing the writing on the wall when it comes to their devices being 
paired with big public cloud instances. When Intel acquired Altera last year, the question was what 
it might mean for the swiftly expanding market for reconfigurable computing and more narrowly, 
what it could signal for the other leading FPGA company, Xilinx. It was clear well in advance of 
the Intel acquisition that FPGAs were poised to make greater inroads in the datacenter, a matter 
that was confirmed by Intel’s figure of massive FPGA cloud use, which were figures they used to 
prop up the ultra-high $16.7 billion acquisition sum (for a company that saw itself playing in a 
future market worth around $1 billion).

While Intel may have been banking on hyperscale and cloud companies to support their FPGA 
investments, standalone rival, Xilinx bolstered its efforts to reach out to larger markets for both 
the application and networking/storage sides of its FPGA business. In that meantime as well, a 
great many new efforts have cropped up showing how FPGAs can snap into an ever-widening 
array of workloads on the compute side, particularly as machine learning, IoT, and other trends 
continue to ramp.

In short, it has been a good time to be the underdog, if we can call Xilinx that for being on its 
own. Just before the close of 2016, Amazon Web Services announced the very thing Intel had 
been banking on—a forthcoming host of FPGA-enabled nodes on its EC2 cloud. This offering will 
be leveraging Xilinx devices, which as the FPGA maker’s SVP of Corporate Strategy, Steve Glaser 
tells The Next Platform, shows FPGAs going mainstream in hyperscale datacenters. “We recently 
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introduced the Xilinx Reconfigurable Acceleration Stack to speed up this type of adoption and 
the AWS announcement is further evidence this is happening right now and the momentum is 
building.”

“The Amazon EC2 FPGA instances (F1) program for now includes the FPGA Developer AMI and 
Hardware Developer Kit with everything a developer needs to develop, simulate, debug, and 
compile hardware acceleration code. Once the FPGA design is complete, developers can save 
it as an Amazon FPGA Image (AFI) and deploy it to an F1 instance and bring their own FPGA 
designs, or go to the AWS Marketplace to find pre-built AFIs that include common hardware 
accelerations. FPGAs are connected to F1 instances through a dedicated, isolated network fabric 
and are not shared across instances, users, or accounts.”

As the company’s Jeff Barr describes, these nodes can have up to eight of the following in a 
single F1 instance: the 16nm Xilinx UltraScale+ VU9P, dedicated PCIe interface with the 2.3 GHz 
base-speed Broadwell E5-2686 CPU, and four DDR4 channels.

Barr says that “in instances with more than one FPGA, dedicated PCIe fabric allows the FPGA to 
share the same memory address space and to communicate with each other across a PCIe fabric 
at up to 12 Gbps in each direction. The FPGAs within an instance share access to the 400 Gbps 
bidirectional ring for low-latency, high-bandwidth communication” although as one can imagine, 
this will take protocol writing to make happen on the user end.

Users can write their code using either VHDL or Verilog and then use verification tools from 
Xilinx, including their Vivado design tools or other compilers. OpenCL tools were not described, 
we will follow up on that when we can get comment from AWS. So far, the tooling is the lower 
level stuff for experienced users and as a side note, is only open in the AWS US East region for 
now. On that code note, we have to temper the idea that this availability will propel FPGAs into 
the real mainstream because so far, the tooling AWS is providing is only really going to appeal 
to folks who already have experience working with FPGAs, even if Jeff Barr says it is simplified. 
It is for this reason that those calling this “FPGA as a Service” might be a bit off track since that 
would imply the tooling is in place to make it a real out of the virtual box option.

It is difficult to tell just how many nodes inside AWS datacenters will be FPGA enabled for user 
adoption, but the beauty about these devices is that AWS might have already had these installed 
on EC2 servers anyway to support its so-called “smart NICs” which use reprogrammable logic for 
network activity, but leave a good part of the FPGA idle for other purposes in the meantime and 
can come with algorithms pre-loaded that can be chewed on for whatever part of the workload 
desired.

This part is just speculation since AWS has not responded to our requests for more information, 
but this is something Microsoft does with its FPGA “personalities” that can handle SDN activity 
then flop over to handle Bing and other workloads they proved out with their Catapult servers. 
These Catapult machines, by the way, have given way to the Olympus servers (a rack version 
with full-bore PCIe cards that can handle GPUs, FPGAs, or a mix) that we can see Microsoft 
spinning out to offer in Azure by the same time AWS F1 (FPGA) instances are made widely 
available (the announcement today was a developer preview of the offering).

“Large-scale financial clearing risk management is essential to delivering value for our 
customers,” said Kevin Kometer, Chief Information officer, Chief Information Officer, CME Group. 
“CME Group has long been an innovator in the use of accelerated computing, for the clearning 
risk management of increasingly complex instruments, including extensive research into FPGAs. 
Amazon EC2 F1 instances will allow us to substantially accelerate rate of innovation of risk 
analysis for our customers, while delivering greater cost efficiency relative to using traditional 
IT infrastructure.” 
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 While Amazon may be the first major cloud to offer FPGAs in the 
cloud (with Azure right on its heels, we imagine) they are not the 
first overall. Some of the smaller high performance computing cloud 
companies have been early to FPGA bat, including supercomputing 
cloud company, Nimbix. 

What Nimbix has done that AWS hasn’t, at least at this point, is put 
the higher-level developer tools and environments in place that will 
actually open FPGA adoption to a much larger potential market. It 
could be they are testing the waters to see how interested users are 
first before investing in the richer set of interfaces and tools to talk to 
FPGAs while leveraging the same parts they use for other datacenter 
functions, but if interest in FPGAs even just on the application front 
side is any indicator, there is a rich opportunity here. We will talk 
more about Nimbix and FPGAs for the supercomputing set shortly, 
but the point remains the same around tooling. 

While the focus has been on how this has been an important boost 
for Xilinx, just because AWS didn’t pick Altera for this particular 
doesn’t mean the Intel-led company has been left on the cutting 
room floor. While Xilinx will likely continue picking up deals like this 
one (which is good, otherwise Altera/Intel will have a monopoly 
situation), it puts the two FPGA makers to the test—and keeps them 
on their development toes. Although here we tend to cover the 
application and to a lesser extent, network/storage functions and 
futures of FPGAs, there is a wide world of FPGA device applications in 
embedded, military, IoT, and other markets that is also on the grow.

Amazon Web Services might be offering FPGAs in an EC2 cloud 
environment, but this is still a far cry from the FPGA-as-a-service 
vision many hold for the future. Nonetheless, it is a remarkable 
offering in terms of the bleeding-edge Xilinx accelerator. The real 
success of these FPGA (F1) instances now depends on pulling in the 
right partnerships and tools to snap a larger user base together—one 
that would ideally include non-FPGA experts.

In its F1 instance announcement, AWS made it clear that for the 
developer preview, there are only VHDL and Verilog programmer 
tools, which are very low-level, expert interfaces. There was no 
reference yet to OpenCL or other hooks, but of course, given such 
a high-end FPGA, AWS might have strategized to go for the top end 
of that user market first to give access to a Xilinx part that has yet 
to hit many datacenters. Also, this is an early stage effort designed 
to appeal to existing FPGA users who might not have otherwise had 
access to the brand new 16nm UltraScale Plus FPGA.

What we found out after talking to companies that carve a niche by 
offering such interfaces via compilers, tools, and frameworks (often 
on their own appliances) is that they are a key to AWS’s strategy to 
onboard new users. On the analytics side, Ryft, an FPGA accelerated 
appliance maker for large-scale analytics is a good example, whereas 
for domain-specific FPGA companies, including Edico will help usher 
in new F1 users for genomics research. In short, the strategy for 
AWS is a familiar one; partner for the expertise, which lends to the 

What the addition of 
FPGAs to the Amazon 
cloud also means 
(in addition to wider 
adoption) is that the few 
companies that carve 
out a niche catering to 
applications that benefit 
from FPGA acceleration 
have a greater 
platform to push these 
capabilities.
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customer base, which creates a stronger cloud product (and presumably, more options for the 
partner due to increased reach).

Ryft’s FPGA accelerated analytics business is driven by government, healthcare, and financial 
services with an increasing push on the genomics side for the types of large-scale pattern 
matching required in searching for gene sequencing anomalies. The company says their FPGA-
boosted analytics on the AWS F1 instances to bolster elastic search will allow for such searches 
across multiple datasets, both for individuals and entire populations. “It’s very difficult with 
conventional analytics tools using just CPUs or even GPUs to this type of search effectively. 
FPGAs are a natural fit for that, and since this is a market the cloud providers want to tackle, it’s 
in their interest to keep pushing the envelope,” McGarry says. The company’s analytics engine 
bypasses the standard ETL processes for this and other workloads, and this will keep speeding 
workloads this and the others powering their business, he adds.

The reason Ryft’s business worked at all is because first, the addition of FPGA acceleration 
workloads like those listed above is not to be dismissed. However, also not to be overlooked is 
the complexity of using low-level tools to get to the heart of reconfigurability’s promise. Like 
the very few other companies out there providing FPGA acceleration for key workloads, their 
emphasis is on ultimate abstraction from the hardware and a focus on key workloads. Amazon, 
it seems, is following their lead, albeit by tapping those who do it best.

As a side note to that domain-specific approach to pulling in non-FPGA experts to AWS F1, we 
spoke at length with Edico Genome in the wake of the F1 announcement. They use custom FPGA-
based hardware to support genomics research, including providing end-to-end sequences in 
minutes (more detail on that coming in a detailed story next week).  McGarry’s point about AWS 
and cloud providers hoping to tackle the genomics boom with enriched platforms for sequencing 
and analysis is an important one, and could help explain why AWS is getting in front of the 
FPGA trend. In the announcement of the F1 instances, genomic research was at the top of the 
potential use cases list.

Ryft is jumping in with AWS to boost elastic search (especially useful for the genomics use case) 
following a nine-month collaboration with the cloud giant to share insight about how to make 
FPGA-based analytics workloads hum. “Amazon certainly understands that the success of this 
instance is dependent on their ability to allow people to abstract the complexity of FPGAs; to 
provide the interfaces and an existing analytics ecosystem for this and other instances,” Ryft 
CEO, Des Wilson, tells The Next Platform. “They came to us because of our ability to do that and 
they will move this into the mainstream this way.”

AWS has its complexity level set high with the Xilinx Ultrascale 8-FPGA nodes it has designed 
for the F1 instance, but according to Ryft’s engineering lead, Pat McGarry, they picked the right 
part for the times. While it still isn’t clear why AWS picked this without bringing along the higher-
level OpenCL interfaces and tools (which are easier to program but don’t provide the same level 
of performance) no one we’ve talked to seems to be anything but excited such a beefy FPGA 
(backed with an equally beefy Broadwell CPU along with DSP cores.

“I suspect AWS chose this very new and high-end FPGA because they are trying to tackle classes 
of problems that none of the older generation FPGAs will be able to touch. It has 2.4 million 
logic elements, a strong Broadwell CPU and 6500 DSP slices. This eats into territory that used to 
belong solely to GPUs as accelerators and is a much bigger play for Amazon than just providing 
FPGA technology,” McGarry says. “This will eventually allow for all kinds of new machine learning, 
AI, big data analytics, you name it, all on one platform. They just have to figure out how to these 
things in a platform way for other verticals like we’ve managed to do with FPGA based analytics.”

One of the key differentiators other than the logic element capabilities and strong host CPU is 
that there is a much greater opportunity with these parts for partial reconfiguration. Being able 
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to reconfigure an FPGA on the fly for different analytical workloads is a big opportunity McGarry 
says, and we will continue to see others doing this while also offloading critical network and other 
datacenter functions on the same device, although Ryft folks were not convinced this is what 
AWS is doing with their FPGAs. “These are really designed just for the F1 instance, we’re quite 
sure,” McGarry stated. “This is purely an EC2 compute play.”

Ryft says they were able to provide AWS with key insight into how to solve the problems of 
distributed accelerators, especially with the highly heterogenous CPU, FPGA, DSP nodes that 
back the F1 instances. “We had to spend a lot of time working with them to understand their 
architecture first,” Des Wilson says. “We ended up figuring out which pieces of our own architecture 
for our Ryft One appliances would fit best and use that as a starting point. We had to make the 
limitations of a cloud provider architecture our strengths and spent months looking at which 
architectural flaws with that don’t match well with FPGAs and use that to our advantage.”

Wilson describes the above engineering effort using an example from streaming data to F1 nodes 
in a cloud environment versus their own hardware. “Instead of streaming data from an SSD, we 
had to think about doing this directly from S3 or Glacier or some other data source. We took that 
model and saw as soon as you have that matched with the reconfiguration capabilities of those 
FPGAs, the AWS architecture lets us connect all that together because of the ring topology with 
400 Gb/S of throughput between the FPGAs. It’s possible to segment jobs nicely. These are very 
new FPGAs and while latencies are an issue with many of these tied together, for most of the 
commercial workloads, this shouldn’t be a problem,” Wilson says. “This is a big deal for future 
workloads on FPGAs.”

This all begs the question about what this AWS work will mean for Ryft’s niche FPGA appliance 
business, of course. While indeed, they get to pick up potential new users of their analytics 
packages (an important benefit), they had to share some of their secret sauce with AWS to make 
such a partnership practical. Ultimately, Wilson says this is a very good thing for their business 
because there will always be customers who need the ultra-low latency of the Infiniband-
connected appliances they sell but the real value is the FPGA analytics software and services. As 
we know, there are razor-thin margins for anyone in the hardware game, so losing out on this 
business isn’t as devastating at it might otherwise sound.

“Everyone loves their own hardware design, so it was a challenge for us in this F1 work to not 
redo everything we’ve done in our architecture and appliance on AWS’s own infrastructure. We 
had to think carefully about their networking architecture, separation of the data across it at 
scale, and the latencies associated with doing so. Once we got past this, things moved along 
well.”

As we will explore in greater detail next week as we look at how AWS is backing into the FPGA 
business by using domain-specific companies like Edico Genome, we will look at more of the 
technical and interface challenges for truly democratizing FPGAs via a cloud model. As we noted 
in the past, there are companies like Nimbix, that have been working with HPC application 
developers to integrate FPGA acceleration, but there has not been such a big public push until 
the AWS announcement.

Since we expect that others, particularly Microsoft, which has deep experience with FPGAs, to 
announce similar offerings in the near future (an educated guess, of course), looking at how 
an expert-required device like this will filter to the mainstream through higher-level or domain-
specific sources will be interesting–and could spell out how Altera/Intel attack the market when 
a future integrated part emerges.

Edico Genome is another company that is showing how domain-specific FPGA expertise can be 
expanded by public cloud availability of reconfigurable devices.
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Just one year ago, Edico says its own FPGA approach sequence analysis allowed the time to be 
pared down to twenty minutes for a single genome using their custom-tailored FPGA-accelerated 
“Dragen” systems. That was an impressive feat then, but the company’s Gavin Stone now says 
they’re pushing near-real time for analysis. “We are able to do this at the speed of the data,” he 
tells The Next Platform, saying that the key to this speed is a mix between their own algorithmic 
tweaks and partial reconfiguration with both Xilinx and Intel/Altera FPGAs.

“Having eight of these FPGAs in a server is a big deal for us. As fast as you can move the data 
around we can analyze the genome, which is something that took weeks a few years ago, then 
days not long ago, and now is within minutes to nearly instantly.” This speedup now means 
processing elements, whether the FPGA or CPU (in the case of the F1 instances, there is a 
beefy Broadwell attached) is freed up for more complex analysis. “The current algorithms have 
an adequate level of accuracy, but because of computational and practical limits, there were 
many algorithms we’ve had in development that could deliver far higher accuracy numbers that 
previously realized. With FPGAs like this available, we are going to find and develop ways to 
make current gene analysis even better,” Stone adds.

The company’s current FPGAs have around a million logic elements, but the newest Xilinx 
UltraScale parts in the F1 instance have 2.4 million. This is a big boost for genomics workloads, 
Stone says, and one that will allow teams to maximize the real estate available on the FPGA for far 
more complex workflows. Of course, to do this means taking a leap in the partial reconfiguration 
zone—swapping in and out different elements onto the FPGA for specific parts of the workload. 
This is not a simple task technically but it is the key to getting the full performance and efficiency 
out of a reconfigurable device.

Partial reconfiguration capabilities have always been available on FPGAs but it has been very 
difficult to make use of, in part because of the timing challenges with pulling parts in and out with 
a “live” FPGA that’s running other operations. “People have been using this approach but only in 
small elements; maybe carving out 5% or 10% blocks to swap. We are doing this at a 90% swap 
level, keeping things like the PCIe controller, drivers, and other essential functions alive and then 
swapping in other engine blocks on the fly.” With the genomics pipeline, for example, there is 
one block to handle compression, another for mapping and aligning, another for variant calling 
and so on. Ultimately, that single device can be used fully as an accelerator for many different 
functions, leading to a far faster time to result—something that is a key point of differentiation 
for users at genomics centers that want to provide analysis results at the point of care.

“With partial reconfiguration, there is no part of the device that lays dormant. It’s technically 
challenging, but once it works, it works extremely well. The barriers to getting to this point have 
been huge and we’ve worked with Xilinx closely on this, but this is becoming more mainstream 
as people start to realize how to truly use the FPGA to its fullest,” Stone says. This work has 
paid off for Xilinx and end users in other areas, who will find it easier to make use of partial 
reconfiguration—something that could promise an even larger field for FPGAs to play in.

Although partial reconfiguration is a challenge for many shops, this is the sweet spot for Edico 
Genome and the reason they can deliver such fast results. That capability will be coming to the 
cloud soon, albeit hindered slightly by the data movement delay. This is not something that will 
add a huge barrier, and Stone says this will keep the company’s own hardware business alive 
since there will always be centers that need the ultra-low latency time to results on site.

When Edico’s business started, the idea had been around custom ASICs, but the volume and 
flexibility story wasn’t there. Stone says he expects this ASIC versus FPGA question will be 
less pressing as those in genomics and other areas realize that even though using partial 
reconfiguration is still not simple, it beats the economics of driving a chip to production and 
taking such a big financial risk. “We are truly able to use the FPGA to its fullest,” says Stone, 
pointing to the benefits of their partial reconfiguration approach. “We do reconfigure on the 
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fly, in the middle of the workflow, which not many people do. Normally, you have to do a full 
reconfiguration, but we’re keeping a lot of the FPGA live and swapping portions in and out. There 
is no way we could do that with an ASIC. And as many see now, genomics is evolving quickly; 
the algorithms change and update and pushing those through quickly with an ASIC would not be 
feasible.” Stone says that the costs of FPGAs will come down as will some of the programmatic 
complexity, making ASICs make less sense.

“There is widespread adoption of FPGAs now; it’s really caught fire over the last few years as 
we’ve seen the writing on the wall with Microsoft’s Catapult project and others getting a lot of 
attention. There used to be niche providers in the cloud but with Amazon putting FPGAs out 
there, it is going to more mainstream—not just for genomics but other data-rich applications.”

Other companies are taking advantage of FPGAs in the cloud, although with a more tailored 
approach. Even though Amazon might be the first major public cloud player to adopt FPGAs for 
larger use, others have been at this game longer. Take, for example, Nimbix—a supercomputing-
focused cloud that delivers high-end hardware to users in high performance computing (HPC) 
and more recently, deep learning and machine learning. Nimbix saw the opportunity for cloud-
based FPGAs and tooling several years ago and can shed some light on where users at the high 
end are going with FPGAs delivered remotely.

Back in 2010, when the term “cloud computing” was still laden with peril and mystery for many 
users in enterprise and high performance computing, HPC cloud startup, Nimbix, stepped out to 
tackle that perceived risk for some of the most challenging, latency-sensitive applications.

At the time, there were only a handful of small companies catering to the needs of high 
performance computing applications and those that existed were developing clever middleware 
to hook into AWS infrastructure. There were a few companies offering true “HPC as a service” 
(distinct datacenters designed to fit such workloads that could be accessed via a web interface 
or APIs) but many of those have gone relatively quiet over the last couple of years.

When Nimbix got its start, the possibilities of running HPC workloads in the cloud was the subject 
of great debate in the academic-dominated scientific computing realm. As mentioned above, 
concerns about latency in the performance-conscious realm of these applications loomed large, 
as did the more general concerns about the cost of moving data, the remote hardware capability 
for running demanding jobs, and the availability of notoriously expensive licenses from HPC ISVs.

While Amazon and its competitors plugged away at the licensing problem, they were still missing 
the hardware and middleware specialization needed to make HPC in the cloud truly possible, 
even those AWS tried early on to address this by adding 10 GB Ethernet and multicore CPU 
options (and later, lower-end Nvidia GRID GPUs). In those early days, this difficulty is what 
fueled the rise of other HPC cloud startups like Cycle Computing, which made running complex 
jobs on AWS more seamless—but the other way to tackle the problem was simply to build both 
the hardware and software and wrap it neatly in a cloud operating system that could orchestrate 
HPC workflows with those needs in mind.

This is the approach Nimbix took and they quickly set about adding unique hardware in addition 
to building their JARVICE cloud operating system and orchestration layer, which is not entirely 
unlike OpenStack. The custom-built JARVICE platform sits on top of Linux to allow it run on the 
heterogeneous collection of hardware that sits in a distributed set of datacenters in the Dallas 
metro area (with more planned soon, including in Europe and Asia). This manages the clusters 
and workflows, assigns resources, and manages the containers that power user applications.

Leo Reiter, CTO at Nimbix tells The Next Platform their typical users fall into two categories. On 
the one hand there is the bread and butter simulation customer that users the many solvers and 
applications in the Nimbix library of scientific and technical computing applications they have 
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license agreements with. For these users, they provide the data and performance parameters 
and the system orchestrates the workflows using JARVICE and their container approach to 
application delivery. Counted in this group are other users with high performance data analysis 
or machine learning needs. On the other end are their developer users, who can use Nimbix 
as a Paas to deliver their own workflows or applications and stick those in the public or private 
catalog. Of course, to do all of this with high performance and scalability means the Nimbix folks 
had to give some serious thought to hardware infrastructure.

Nimbix has been providing Xilinx FPGAs in their cloud since 2010 for researchers and the Xilinx 
development team, but they also have a wide range of Nvidia GPUs—from the low end Maxwell-
based parts for the Titan X (for machine learning training) to the new M40 processors for deep 
learning all the way up to the Nvidia Tesla K80 cards for those with high performance simulations 
and analytics. Much of the processor environment consists of 16-core Haswell parts, which they 
can create secure, fractional nodes from as needed (making a 16-core part look like a 4-core 
with the necessary memory apportionment, etc.). They also use Infiniband for all nodes and 
for their storage system. So far, their cloud compares only to some elements Microsoft has 
integrated (they now have some K80s and Inifiniband capabilities) but overall, Reiter says, they 
are succeeding because no other cloud provider is making the hardware investments to quite the 
same degree. He points to the fact that there are GPUs on AWS, but the Grid parts aren’t meaty 
enough to handle the seismic, bioinformatics, engineering and other HPC oriented workflows—
and even for deep learning training these are insufficient to their users.

What is interesting here is that just as companies that have specialized in HPC hardware 
are finding their gear is a good fit for deep learning training and broader machine learning 
applications, so too is Nimbix finding a potential new path. They have managed to carve out a 
niche in supercomputing and a few other areas, but so far, there aren’t a lot of robust, tuned 
high performance hardware options as a service that fit the machine learning bill. We noted that 
Nervana Systems (recently acquired by Intel) is doing this, and there are a few others who are 
offering deep learning as a service, but a company that HPC users might know might be very 
well positioned as deep learning and HPC merge in some application areas and require a remote 
sandbox—or eventual production environment.

Reiter says they are seeing more interest in deep learning and machine learning and have added 
robustness to their software stack with hooks for TensorFlow, Torch, and other frameworks. 
Since they already have the heterogeneous hardware on site and a proven business model 
behind them, we could see Nimbix move from quiet company from the research regions to HPC 
push into greater visibility via a new crop of machine learning applications and end users.

These two areas; high performance computing and deep learning/machine are where we see big 
opportunities for FPGAs in the next few years. These emerging workload demands, along with 
different delivery models (cloud, on-prem) bolster the belief that the future is bright for FPGAs 
on the application acceleration front.
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Chapter Three
FPGAs in High Performance Computing

So far, we have established a potential path to FPGA adoption in cloud, hyperscale, and some 
enterprise applications (with machine learning next on our list). But what about supercomputing, 
or high performance computing, which seems like a fit for the power-aware capabilities of an 
FPGA?

At the last five annual Supercomputing Conferences, an underlying theme has been the potential 
of accelerators to add energy-efficient performance. In supercomputing, accelerated computing 
is becoming the new normal—and there is a distinct possibility that FPGAs could find a place in 
the coveted Top 500 list of supercomputers in the future, especially when integrated CPU and 
FPGA parts begin to appear.  

The trend line for large-scale datacenters on the hyperscale end and for some specialized 
commercial and research HPC-centric workloads in genomics, seismic analysis, and finance, 
intersects with where FPGAs are heading. A lack of FPGA accelerated systems on the Top 500 
now is no indication of what the future holds. With Intel aiming to eventually integrate the Altera 
FPGA IP they acquired this year for over $16 billion and the other major FPGA maker, Xilinx, 
beefing up its hardware and software approach to broader markets, we are poised for a shakeup 
in accelerated computing at extreme scale.

Intel is not the only company that has a path to integrated FPGAs with CPUs and the companion 
software environment to wrap around it. Armed with a new Qualcomm partnership for low-power 
FPGA approaches to suit hyperscale datacenter needs, and a freshly announced partnership (that 
is finally formalized after several years of co-development) with IBM’s Open Power Foundation, 
Xilinx sees a path to the large-scale datacenter. High performance computing applications are 
part of this roadmap—but so too are workloads that other accelerator approaches are tackling, 
including Nvidia with its newly launched  Tesla M40 and M4 processors  aimed at hyperscale 
datacenters running machine learning training and inference workloads, among others in data 
analytics, security, and beyond.

There is reason to believe that within the next few years, there could be at least a few entrants 
on the Top 500 list that are taking advantage of FPGA acceleration as well. With Intel’s acquisition 
of FPGA maker Altera earlier this year and their projections for integration with Xeon CPUs and 
the other major FPGA company, Xilinx, striking up partnerships with Qualcomm on the low-
power ARM processor side and IBM’s OpenPower Foundation on the other, the FPGA space is set 
to become varied and heated enough to spur unprecedented activity for FPGAs on the compute 
side.

The accelerator story for top supercomputers is a strong one, starting with GPUs, which were 
snapped in as coprocessors on some of the world’s largest systems over the last five years. Since 
then, other accelerator options, including the Xeon Phi (and next generation Knights Landing 
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coming soon) have emerged, which aim to provide a more programmable interface to accelerate 
HPC applications.

Even though there are no systems sporting FPGAs on the Top 500 list, there is some experimental 
work happening in traditional HPC applications using programmable gates, coupled with on-chip 
and programmatic enhancements, which could make FPGAs more attractive for HPC. One of 
the major barriers for supercomputing or general enterprise datacenters is simply that these 
devices are difficult to program, however. We described how that is changing with some recent 
momentum around moving FPGAs closer to procedural languages and OpenCL, but it is still a 
long road.

The good news for HPC, especially in research and academic environments, is that there are 
plenty of graduate students on-hand at the national labs and universities that can spend the 
time needed to specialize in FPGA development and programming. But still, that is not enough 
to make these devices ready for the next generation of supercomputers, even with momentum 
from vendors like IBM, who through their CAPI interface and shared memory, are making FPGAs 
and other devices closer to the compute and eventually, more integrated programmatically.

Unlike some enterprise workloads, HPC is historically floating point intensive, which means that 
these applications are not a good fit for the FPGA, at least until vendors can snap in dedicated 
floating point units—something that Altera has publicly said they are working on for future 
generations (and Xilinx will likely follow suit). It is not that it’s impossible to get reasonable 
floating point performance off FPGAs now, but there are a lot of gates and it would be woefully 
inefficient to do so. GPUs, the dominant accelerator in HPC, are stuffed with floating point units, 
on the other hand and coupled with their rich CUDA (and OpenCL) ecosystems, are still the 
simpler choice for acceleration.

FPGAs do offer the fine grained parallelism and low power consumption of other accelerators, 
with extreme configurability added in. But beyond the floating point limitations to date, the 
difficult programming environment, there is also another big limitation—albeit one that will be 
overcome soon enough. For these applications, FPGAs are limited by the internal memory on the 
chip. The bandwidth might be great, but without enough memory, this is a big limitation.

Wim Vanderbauwhede at the University of Glasgow’s School of Computing Science has been 
working with FPGAs for well over a decade and has moved his research into the area of looking 
at key HPC applications and how they match to FPGAs. In a chat with The Next Platform in 2016, 
he talked about how for things like search and working on large graphs, the FPGA is well-suited 
(although in the latter case, memory limitations are still an issue).

There are already a range of high performance computing applications that can be run on the 
FPGA for a sizable boost, presuming the code legwork can be done. According to Vanderbauwhede 
(whom incidentally, wrote the  book on high performance computing on FPGAs) if code has 
already been optimized for other accelerators, including GPUs, much of the heavy lifting has 
already been done. In his teams’ work on FPGAs for a select set of HPC applications, it took about 
one month for a full time person to prepare code to run at high performance and efficiency on 
FPGAs—a boost that is worth the effort in areas like financial services where stock option pricing 
and Black Scholes models really let the FPGA shine. In this example, along with others that 
are multi-kernel and deal with relatively small datasets (including molecular dynamics and key 
biomedical applications) FPGAs can perform well, but there are other areas that offer opportunity 
in the future that are worth picking through for now, including weather modeling—an interesting 
target since it is straight number crunching and memory hungry.
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 More recently, Vanderbauwhede and his team have taken a traditional 
HPC application in weather modeling to look for speedups with FPGA 
acceleration. While they have had success performance-wise, he 
says that for these centers and other large supercomputing sites, it’s 
far more a matter of performance per watt. This is where FPGAs will 
find a fit in HPC while the memory and programming environments 
catch up.

“There is use for some HPC applications like weather modeling as 
long as you are able to use the full parallelism of the device. What we 
have done shows it is just as power efficient as a multicore system 
and far more efficient than any original single-core code they used 
to run. But of course, memory is still an issue.”

Vanderbauwhede says that the problem with FPGAs for weather 
simulations and a select set of other HPC application is that there is 
always a limitation in the number of gates one has to work with. That 
means, if you can split it up and reconfigure the FPGA to do different 
parts of the program at different times, and it is fast enough, the 
cost of swapping the configuration is offset—assuming, of course, 
there is enough data to work with. “So in the weather example, the 
time spent computing a volume of atmosphere will be larger than the 
time it takes to reconfigure the device. That’s exciting because until 
recently, even though they’re called reconfigurable devices, a lot of 
that didn’t happen on the fly.”

In terms of future directions for FPGAs in HPC, Vanderbauwhede 
agrees that once they are more tightly integrated and can share 
memory it would be a step change. “If you have an FPGA in the 
socket where normally a processor would sit so that it has access to 
the front side bus, that is a game changer. At the moment, the big 
problem is that it’s a PCIe offload model. There’s so much data that 
needs shifted back and forth, so getting around that will likely open 
FPGAs for more users.

FPGAs might be the next big thing for a growing host of workloads 
in high performance and enterprise computing, but for smaller 
companies, not to mention research institutions, the process of 
onboarding is not simple—or inexpensive.

From the systems themselves to the programming and compiler 
tools, even experimenting with FPGAs is an undertaking resource-
wise. While there are efforts to lessen this load, including the 
addition of a richer OpenCL toolset and cloud-based FPGA offerings, 
the ecosystem for FPGAs is still developing, which means getting to 
“point A” is where some foundational work needs to be done. We 
have already seen a great deal of momentum for machine learning 
codes that can take advantage of FPGA-based systems, but despite 
the increased interest in FPGAs at the annual Supercomputing 
Conference in Austin, there is still relatively little information about 
which scientific codes might be a good fit for FPGA acceleration.

The dominant accelerator in high performance computing is the GPU, 
with a swell of scientific codes across a wide range of disciplines 
available and CUDA-ready. This type of ecosystem development for 

“I’ve been watching 
the evolution of FPGAs 
since 2000, but it’s 
really just in the last 
five years that they’ve 
become useful for HPC. 
Five years ago, GPUs 
were in experimental 
clusters and testbeds 
and now you’ll see them 
dominating in the Green 
500 and in other big 
supercomputers. It is 
not impossible that we 
will see the same thing 
with FPGAs at some 
point as well.”
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HPC has not happened to any great degree among the FPGA vendors, in part because the 
compute market has been a secondary focus. There are other technical requirements (we’ll get 
to that in a moment) that have not made HPC codes well-suited to FPGAs, but a lot of that is set 
to change. The goal now is to offer researchers a rare chance to actually experiment with their 
codes using a real system—something that is hard to do “in the wild” without some serious up-
front cost and expertise.

For Derek Chiou, former professor at the University of Texas at Austin and now full-timer at 
Microsoft on the Catapult project, this lack of research access to FPGAs is a problem—but there 
are efforts to bring FPGAs to the academic masses.

For instance, the Texas Advanced Computing Center (TACC), has set its sights on the future 
of FPGAs by making the Altera Stratix V FPGA-outfitted Catapult servers available for free for 
researchers, assuming of course, they are willing to share the code they develop on the platform. 
Chiou, who started his work with FPGAs as a post doc at MIT, toiled away on router architectures 
at Avici Systems before becoming a professor at UT Austin, now is a liaison between TACC and 
Microsoft. The effort now counts several hardware partners, including both major FPGA makers, 
Xilinix and Altera, and has commitments for tooling from Intel, compilers from Bluespec, and a 
C-to-gates compiler from Impulse Accelerated Technologies. The TACC work is supported by an 
National Science Foundation grant and builds on work Chiou and teams did on other projects, 
including a program called Research Accelerator for Multiple Processors (RAMP) that examined 
the problems of building ultra-dense, multicore systems from FPGAs and other processors.

TACC will have an impressive array once the systems are up and running. Currently, the project 
is in the install phase, but Chiou says there will be 400, or perhaps slightly more, machines. They 
are in the process of evaluating codes for the systems now, but since this is the largest open 
installation of FPGA-based systems, he expects there to be great demand.

The real takeaway from the work at TACC with FPGAs will be seeing the ultimate scalability of the 
system across a new range of codes. The configuration chosen for TACC is a miniature version of 
what Microsoft implemented for its Bing search engine, which was able to significantly accelerate 
Bing across a cluster of 1,632 servers featuring the same Stratix V in a half-rack of 48 nodes with 
one single FPGA board connected via PCIe and connected to the other FPGAs via SAS cables.

It will be interesting to see how many scientific codes find a fit with the FPGA systems since the 
Altera Stratix V does not offer native support for floating point. That is not a deal-killer since soft 
logic can be used as a workaround, but that is not very efficient. Once Altera rolls out its Arria 
10 FPGAs, however, a new world could open for high performance computing codes since those 
will include hardened 32-bit floating point units. The Arria 10 has on the order of 1.5 teraflops 
of floating point performance, which is quite good considering the low amount of power they 
burn. The next generation Stratix 10 is expected to have 10 teraflops of 32-bit floating point 
performance. While 64-bit is the preference for many scientific and technical codes, but there 
Chiou says there are several codes that will hold nice nicely to 32-bit and given the performance 
per watt, which is better than GPUs and definitely CPUs, that tradeoff might be a consideration.

Following Chiou’s work on the Catapult project to accelerate Bing, the team noted that the big 
challenge ahead still lies in programmability. While he says that RTL and Verilog are common 
tools for his work, efforts being made in Scala and OpenCL represent a path forward for wider 
adoption. “Longer term, more integrated development tools will be necessary to increase the 
programmability of these fabrics beyond teams of specialists working with large-scale service 
developers.” Within the next decade to fifteen years, bringing us to the end of Moore’s Law, 
however, “compilation to a combination of hardware and software will be commonplace.”
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The most compelling applications and system research will be given an allocation and consulting 
services to port their applications to Catapult to make effective use of FPGA-based acceleration, 
all at no cost.

Oftentimes, the work done at the ultra-high end (supercomputing) trickles down to the enterprise, 
but for FPGAs, the situation is somewhat flipped. The hyperscale web companies and social 
networks are the ones leading the charge toward FPGA development in large part and much of 
this begins with deep learning and machine learning.

Research has been ongoing to integrate FPGAs into existing HPC workflows in several key areas. 
Among several examples we wanted to highlight are those from high energy physics hub, CERN, 
as well as among the supercomputing set at weather modeling centers.

At the core of the rise in interest in FPGAs in HPC, at least for the non-specialist in programmable 
hardware, is OpenCL—a framework that extends the programmatic ease of other accelerators, 
including GPUs. While it is generally agreed that there is a performance hit created with this 
added level of abstraction from programming the device directly, it does mean that scientist and 
other end users might be more willing to give FPGAs a second look beyond the areas where they 
are already used—often as an option to an expensive custom ASIC.

This story is playing out at high energy physics research center, CERN, which has historically 
kept an open mind about adopting and integrating diverse accelerator, memory, storage, and 
other technologies—as long as experiments can be captured and processed faster and with 
less power. On the processing and acceleration front, the center uses standard X86 processors 
with the possibility of more ARM parts in the future, as well as GPUs. Custom ASICs and FPGAs 
have also been in use at various CERN sites for a range of monitoring, signal processing, and 
networking tasks.

For the curious, a 2008 paper sets forth the many ways FPGAs have been used at the center, 
but with coming technology refreshes and upgrades at CERN research sites, one might expect a 
potentially new set of use cases for FPGAs—specifically as processors for major portions of CERN 
workloads. With the availability of OpenCL as a gateway, the possibilities for non FPGA experts 
have opened wide, making FPGAs a source of interest not just for traditional uses at CERN, or 
even for workload acceleration, but as key processing elements for vital segments of major 
experiments, including the Large Hadron Collider LHCb experiment.

Following upgrades, this particular experiment will cull 500 data sources, each of which will 
create data at 100 Gbps. This work presents challenges on both the data acquisition and 
algorithm acceleration front, which put even state of the art FPGAs to the test, according to 
Srikanth Sridharan, Marie Curie Fellow at CERN. His team is looking at how to use OpenCL for 
FPGAs in a way that goes beyond acceleration—all the while leveraging OpenCL to demonstrate 
its adoptability for the larger sets of domain scientists who have little time to dig into the 
complexities of hardware description languages and techniques.

Sridharan has spent much of his career working with FPGAs working in industry for companies 
like Qualcomm as well as large research hubs like the NSF Center for High Performance 
Reconfigurable Computing (CHREC). Now at CERN, he is turning his attention to the role FPGAs 
might play in high energy physics, although not in ways one might expect. While his team is 
focused on acceleration of various algorithms (the area where a great deal of research into GPUs 
and other accelerators tends to fit) a new idea—using FPGAs not as accelerators, but as low 
power, high performance data acquisition system processors, is where is most recent work lies.

FPGAs are not a new addition to the data acquisition (DAQ) platform at CERN, but the OpenCL 
use to program FPGAs for more than acceleration is a new element. Sridharan says they were 
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 initially used for this part of the experiment workload to “collate the 
streaming data coming off the front end electronics over multiple 
channels.” He says they can also be used in the “low level trigger 
system where the acquired data needs to be quickly processed to 
arrive at trigger decisions.” However, he says that the custom nature 
of this and the need to do operate in high radiation environments 
“make any other technology unsuitable for these purpose and ASICs 
are suitable only for high volume production and are unviable for 
these applications due to prohibitive costs.”

Although the DAQ tests revealed FPGAs using OpenCL as a viable 
tool, with the few missing pieces he notes above, none of which will 
prevent future application, algorithm acceleration on FPGA using the 
Altera compiler for OpenCL revealed scattered results. For one test, 
FPGAs performed far better and with much better efficiency than 
the GPUs that were used for this part of the task, and for the other 
experiment, they were significantly worse. This could be in part to 
a lack of thorough optimization, Sridharan says, but the team will 
continue to explore.

Overall, he says an optimized implementation for FPGA on the 
algorithm acceleration side would provide a better sense, but 
ultimately, “it cannot be denied that OpenCL makes exploiting FPGAs 
for acceleration as easy as exploiting GPUs. That is a long way from 
the days of painstaking efforts to create a cycle accurate HDL design, 
functionally verifying it, debugging the design errors, and fixing the 
timing violations to realize a working system.” Further, he notes that 
in cases where optimization work for FPGAs have been done, the 
performance per watt story is an attractive one for CERN. “Extracting 
more parallelism from the algorithm, creating an FPGA optimized 
implementation, investigating the huge drop in performance for 
some kernels, and also accurate power profiling of the design could 
be the direction of future work.”

“it remains to be seen how such a system would perform compared to 
a custom implementation in VHDL/Verilog, but there definitely exists 
a case for OpenCL in this application due to the massive productivity 
gain and ease of use it offers,” he says. Further, he says that the 
wider accessibility of OpenCL means non-FPGA experts can design, 
debug and maintain the code.

Weather modeling and forecasting centers are among some of the 
top users of supercomputing systems and are at the top of the 
list when it comes to areas that could benefit from exascale-class 
compute power.

However, for modeling centers, even those with the most powerful 
machines, there is a great deal of leg work on the code front in 
particular to  scale to that potential. Still, many, including most 
recently the UK Met Office, have planted a stake in the ground for 
exascale—and they are looking beyond traditional architectures to 
meet the power and scalability demands they’ll be facing in the 
2020-plus timeframe.

“The idea behind 
implementing a data 
acquisition (DAQ) 
system was to explore 
the possibility of using 
OpenCL for more than 
just acceleration. Many 
of the design elements 
needed to realize a 
DAQ system in OpenCL 
already exist, mostly as 
FPGA vendor extensions, 
some of which are 
going into subsequent 
versions of the 
OpenCL specification. 
However, a small 
number of elements 
are missing, preventing 
full realization of a 
complete DAQ system 
but since these elements 
have simple, feasible 
solutions, they could 
also be implemented if 
the FPGA tool vendors so 
desire.”
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The Met Office released a report in mid-2016 on its own requirements for exascale computing, 
which follows news from ISC16 last week about the vision for the 2017 systems to back its 
efforts which focuses on a number of elements for R&D emphasis. These include the exploration 
of new architectures, bolstering programming models, enhancing I/O and workflow and coupling 
complex multi-scale and multi-timescale models. The domain specific nature of the code work 
requires a more focused deep dive, but one of the key elements in the report is the focus on 
emerging architectures.

As the authors note, “Total power requirements suggest that CPUs will not be suitable commodity 
processors for supercomputers in the future.” In addition to looking to more common accelerators, 
including GPUs and Intel Xeon Phi, the Met Office is keen on watching 64-bit ARM developments 
as well as, most surprising, FPGAs as suitable offload engines.

“FPGAs are a well-established technology but difficult for applications developed using high level 
languages. Two potential research avenues include first developing a software stack to transform 
high level language code and transform it into hardware logic for FPGAs.”

There has already been work to develop the software backbone for FPGAs, but this is the first 
time we’ve seen public statements from a major weather center directing attention to it. Among 
the other novel architectures is the D-Wave quantum computer, which can “in principle, compute 
the entire space of a minimization problem, albeit with some non-trivial restrictions on how 
that minimization problem is defined.” The Met Office also notes that quantum optical devices 
are another potential avenue and says “research into how such devices might be exploited to 
perform simple computations and they can be coupled into existing software stacks and what 
new algorithms might be possible.”

Although the weather modeling and prediction arena might be interested in what comes after 
Moore’s Law, nearly all centers are operating with CPU-only machines. ECMWF and others have 
some GPUs on their systems, which are used for research versus production (as we understand 
based on our last check-in with the center) because of the nature of their codes. With some 
exceptions in the research arena, these codes are complex and not amenable to GPU acceleration 
except for certain parts that can be offloaded. This is not to say that GPUs will never find a place 
in weather prediction, or FPGAs for that matter, but if the weather communities are serious about 
exploring new architectures, investing in the code to fit the next generation of systems will be a 
requirement.

As is the case in many other scientific computing domains, writing codes from scratch to fit new 
architectures is not an option. Many codes, including WRF and others, have been developed over 
the course of many decades, with tweaks to suit the addition of new cores and memory options 
for optimizations. If integrating GPUs is difficult, one can only imagine the road ahead for FPGAs, 
which already have the reputation for being difficult to program.

For weather, we can predict more of the same ahead for the pre-exascale machines—and perhaps 
even those in the 2020 timeframe. In 2016, just four years away from the time when some of the 
first exaflop capable machines might be announced, there are many Top 500 supercomputers 
devoted to weather; many of which are in the top 100. Since these centers buy duplicate systems 
for continuity and research reasons, there are dual machines at ECMWF at the #17 and #18 
spots and another duo at the #29 and #30 spot from the UK Met Office, which ran the Top 500 
benchmark on its newest Cray XC40 systems for the first time to achieve the high ranking. Other 
machines in the top 50 of the list include the Korean Meteorological Administration and their twin 
systems (also Cray XC40) and NOAA’s new Cray systems at the #51 and #52 spots.

The full report from the UK Met Office sheds some light on the higher level code work that needs 
to be done, but these are to optimize for larger-scale CPU only machines. The question we will 
be chasing in the coming months is how much effort, both in terms of codes and systems, will 
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be required to get weather modeling out from traditional system architectures in the post 2020 
timeframe.

As these and other use cases emerge in HPC, we keep this in mind and turn an eye to a much 
faster-moving area for development of both systems and software: machine learning and deep 
learning. 
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Chapter Four 
FPGA Future for Deep Learning, Machine 
Learning

It was with reserved skepticism that we listened, not even one year ago, to dramatic predictions 
about the future growth of the deep learning market—numbers that climbed into the billions 
some estimates, despite the fact that most applications in the area were powering image tagging 
or recognition, translation, and other more consumer-oriented services. This was not to say that 
the potential of deep learning could not be seen springing from these early applications, but 
rather, the enterprise and scientific possibilities were just on the edge of the horizon.

In the meantime, significant hardware and algorithmic developments have been underway, 
propping up what appears to be an initial Cambrian explosion of new applications for deep 
learning frameworks in areas as diverse as energy, medicine, physics, and beyond.

What is most interesting is that in our careful following of peer-reviewed research over the last 
couple of years, it was only just in Q3 of 2016 that a large number of deep learning applications 
in diverse domains have cropped up. These breathe new life into the market figures for deep 
learning that seemed staggering, at best—at worst, woefully optimistic.

These also help explain why companies like Intel are keen to make acquisition for both the 
hardware and software stacks from companies like Nervana Systems and Movidius, why Nvidia 
has staked its future on deep learning acceleration, and why a wealth of chip startups with 
everything from custom ASICs, FPGAs, and other devices have rushed to meet a market that 
until very recently, just hasn’t been present in sufficient volume to warrant such hype. As a 
counterbalance to that statement, a significant uptick in research employing various deep 
learning frameworks does not create a market out of thin air either, but the point is that there is 
momentum in areas of high enterprise and scientific value—and it keeps building.

While cloud represents an overall opportunity for FPGAs and HPC is promising research area, 
machine learning and the deep learning subset of those problems is another huge opportunity 
in 2017 and beyond. Major web companies over the course of 2016 put their FPGA machine 
learning work on center stage, but none made quite as much noise as Microsoft.

After three years of research into how it might accelerate its Bing search engine using field 
programmable gate arrays (FPGAs), Microsoft came up with a scheme that would let it lash 
Stratix V devices from Altera to the two-socket server nodes in the minimalist Open Cloud 
Servers that it has designed expressly for its hyperscale datacenters. These CPU-FPGA hybrids 
were rolled out into production earlier this year to accelerate Bing page rank functions, and 
Microsoft started hunting around for other workloads with which to juice with FPGAs.

Deep learning was the next big job that Microsoft is pretty sure can benefit from FPGAs and, 
importantly, do so within the constraints of its hyperscale infrastructure. Microsoft’s systems 
have unique demands given that Microsoft is building systems, storage, and networks that have 
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 to support many different kinds of workloads – all within specific 
power, thermal, and budget envelopes.

Microsoft’s efforts to accelerate the training of various kinds of deep 
learning approaches – including convolutional neural networks, deep 
belief neural networks, and recurrent neural networks –put FPGAs 
through the paces in 2016. Such networks are at the heart of systems 
that perform computer vision and video and photo recognition, 
speech recognition and natural language processing; they are also 
used in recommendation systems that help push products to us in 
advertisements and on retail sites and behind all kinds of intelligent 
agent software. These deep learning systems are what gives the 
modern Internet whatever brains it has, to put it bluntly.

Unlike researchers or commercial enterprises that build deep learning 
systems that only have to do that one job, Microsoft has to operate 
its infrastructure at scale, and this makes its choice of accelerator a 
bit different from operating in the abstract, explained Eric Chung, a 
researcher in the Microsoft Research Technologies lab that adapted 
Microsoft’s Open Cloud Server so they could be equipped with FPGA 
accelerators, a system that was called Catapult.

“The datacenter is interesting because we get to scale,” explained 
Chung. “The key here is that we have a large set of fungible resources 
that we can set up, that we can allocate on demand for a particular 
task, and when that resource is no longer needed, we can use those 
resources for other applications. The datacenter has a very diverse 
set of applications, and this is a very different question than asking 
what would you do if you just wanted a platform for deep learning. 
Machine learning practitioners just want the largest GPU cluster than 
can get, and we are asking a slightly different question here.”

The choice of system design involves balancing the desire to have 
specialized functions for specific applications against the economics 
and simplicity of having a homogeneous set of infrastructure. Having 
a relatively homogeneous set of infrastructure allows for components 
to be purchased at the highest volumes and therefore the lowest 
prices and also increases the maintainability of the infrastructure 
because the support matrix on components is smaller. (This is 
one of the reasons why the X86 server has come to dominate the 
datacenter.)

The problem arises, however, when you have an application where 
the work just can’t get done fast enough on CPUs, or you have to 
allocate a tremendous amount of resources to an application to 
get an answer in a timely fashion. We would say that you end up 
paying with either time or money, and sometimes both if the job is 
difficult enough. So it is with deep learning, which only achieved the 
breakthroughs we have seen when convolutional neural networks 
with very large training datasets were married with GPUs with lots of 
relatively inexpensive parallel computing capacity.

“The deep learning community is very happy with this because 
you have given them machines based on GPUs or ASICs that can 
speed up the convolutional neural networks by several orders of 

“What I am really 
excited about are the 
Stratix 10 FPGAs will 
be using Intel’s 14 
nanometer process 
and will have up to 10 
teraflops per device. 
And that is when I think 
this space gets really 
interesting.”
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 magnitude,” Chung said. “But there are some problems with this. If 
the demand is low at any given time, you have a stranded capacity 
issue. Another problem is that you have broken this in the datacenter. 
If your demand exceeds what you have in your limited pools, you 
cannot scale beyond that. In fact, within Microsoft we do have a 
lot of GPUs and the big complaint is that we do not have enough of 
them. And heterogeneity is incredibly challenging for maintainability. 
You want to have the minimum number of set of hardware SKUs to 
test and maintain. So having a very different SKU to fit GPUs is very 
challenging.”

Microsoft could put a GPU accelerators in every single server, 
which is great for homogeneity and maintainability, but this would 
substantially increase the power and cost of servers, said Chung. 
And not all workloads will necessarily make use of those GPUs, even 
if they could be put into the Open Cloud Servers, which they cannot. 
(Microsoft could use a 40-watt GPU aimed at laptops and plug it 
into a mezzanine card much as it does its FPGA, but the GPU is not 
necessarily as malleable as an FPGA when it comes to the diversity 
of functions it can perform.) Microsoft could also just create special-
purpose ASICs specifically to run neural nets.

As we know from the network appliance business, which uses the 
bulk of FPGAs sold today, an FPGA is basically a way to simulate 
the operations of an ASIC. It is arguably harder to program than a 
GPU accelerator, but it has its own kind of flexibility in that it can 
be programmed to do just about anything a chip can do as well as 
implement the algorithms embodied in software. The downside of an 
FPGA, at least with the current generations of devices available from 
Altera and Xilinx, the peak performance of an FPGA is considerably 
less than for a GPU accelerator. The FPGA therefore represents a 
balance between something that is general purpose and specialized 
hardware, said Chung.

What seems clear is that Microsoft wants to have some kind of 
relative accelerator with a low power envelope inside of its Open 
Cloud Server nodes. The Stratix V FPGAs from Altera weighed in at 
around 25 watts, adding about 10 percent to the heat dissipation 
of the server, while adding only around 30 percent to the cost of 
the server. Chung was not at liberty to discuss what an Open Cloud 
Server mode cost and what it was paying for the FPGA accelerator 
daughter cards in the system. Our guess is the node costs a couple 
thousand dollars and the FPGA accelerator costs several hundred 
dollars.

For various kinds of recognition systems, Microsoft uses deep 
convolutional neural networks, and it wants to use its infrastructure 
for both training the nets and for running the algorithms that are 
derived from the training that actually do photo, video, and voice 
recognition in production applications. (To give you a sense of the 
scale of these applications, Facebook uses massive banks of GPUs to 
train neural nets how to analyze photos for their content, and uses 
CPUs to use the output of these nets to categorize a whopping 600 

“At Microsoft, we have 
a very diverse range of 
workloads – enterprise, 
Bing, Azure workloads, 
we have latency critical 
workloads and batch 
workloads, email – I 
would be willing to say 
that the number of 
servers we needed for 
running deep learning 
is at most in the single 
digits percentage of 
all workloads. This is 
a problem for ASICs 
because there is a long 
turnaround time to 
implement them.”
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million photos uploaded by users every day on the social network. How much CPU capacity it 
takes to do this is a secret, but it is probably not a small amount.)

Microsoft’s goal, said Chung, is to get an order of magnitude performance increase on neural 
nets using the Catapult FPGA add-on for its Open Cloud Servers and fitting in that 30 percent 
incremental cost and 10 percent incremental power budget. Microsoft wants to expose the 
FPGA functionality as it relates to deep learning as a composable software library. Incidentally, 
Microsoft can change the personality of an FPGA in around a second, and has created a different 
software stack it calls the Azure SmartNIC, which is a network interface card married to an FPGA 
that can do line rate encryption/decryption and compression/decompression on network traffic 
as well as other software-defined network functions using the same Catapult mezzanine card.

The Catapult FPGA card has a Stratix V D5 that has 172,600 Adaptive Logic Modules (ALMs) 
which implement the “code” in the FPGA plus 1,590 hard coded digital signal processors (DSPs) 
and 2,014 M20K memory blocks (for a capacity of 39 Mbits). The Catapult FPGA mezzanine card 
has 32 MB of NAND flash memory and 8 GB of DDR3 DRAM memory (two sticks running at 1.33 
GHz) for storage and has a single PCI-Express 3.0 x8 link to hook the FPGA to the Open Cloud 
Server node.

This is very heady stuff, but the cut and dry is that this FPGA block implementing the neural net 
is statically and dynamically reconfigurable, so you can dial up and down the number of layers 
and dimensions in the net as well as change the precision of the numbers used in the algorithms 
without having to rejigger the FPGA’s underlying hardware description language.

The Catapult network also allows for neural nets to extend across multiple FPGAs. Chung’s 
colleague at Microsoft Research Technologies, Andrew Putnam, described at last year’s Hot Chips 
shindig. Each FPGA has two Mini-SAS SFF-8088 ports coming off it, which is used to make a 
private network fabric that is just for the FPGAs and that is separate from the 10 Gb/sec Ethernet 
switched fabric that links the Xeon server nodes to each other so they can share work and data. 
The SAS links run at 20 Gb/sec and there is about a 400 nanosecond latency hop across the 
SAS fabric. Each Open Cloud Server has 48 nodes – 24 half-width servers with two Xeon sockets 
each – and the torus interconnect works like this: six adjacent FPGA cards are linked in East-
West fashion to each other, and then these multiple groups of FPGAs are linked to each other in 
a North-South fashion to cover all 48 FPGAs in a single rack of Open Cloud Servers. (Microsoft 
had to create its own six port and eight SAS cables to do this FPGA fabric.)

The point is, this FPGA fabric allows for up to 48 of the devices to be ganged up to work together 
without involving the CPUs or their network whatsoever. This is one of the critical aspects of 
what Microsoft has done that makes its use of FPGAs scalable and competitive with GPU or other 
kinds of accelerators of special ASICs for running neural nets. The FPGA setup has two different 
modes of operation when running neural net training code, says Chung: one that processes a 
single image to do a classification as fast as possible and another that works in batch mode that 
throws a bunch of images at the net and classifies them in parallel.

So how does the FPGA stack up against CPUs and GPUs when it comes to neural net training? 
Microsoft ran some tests on its Catapult setup and compared it to some raw CPU and CPU-GPU 
hybrid tests using the ImageNet benchmark to figure that out. 

The CPU-only test is for an Open Cloud Server node using to eight-core Xeon E5 processors, and 
it is running Linux and the Caffe neural net framework. That server node has 270 gigaflops of 
performance with processors running at 2.1 GHz, and it is able to process 53 images per second 
on the ImageNet-1K test. (This has 1,000 different image classifications.) Chung says this yields 
an efficiency of about 27 percent on the CPUs, which is not all that great. The machine had a 
peak power draw of 225 watts and if you do the math that works out to around 300 million 
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operations per second per joule. Chung did not talk about how the Open Cloud Server equipped 
with the Stratix V FPGA did, but as previously reported, it can do 134 images per second.

For its most recent deep learning tests, Microsoft upgraded the Stratix V FPGA card in the 
Catapult system to an Arria 10 GX1150 from Altera, which has a lot more oomph. Microsoft had 
been projecting it could get about 233 images per second processed on ImageNet-1K using the 
Arria 10 FPGA, but it has done a bit better than that in its actual tests, hitting 369 images per 
second. With 265 watts of power draw, that works out to 1.9 gigaoperations per second per 
joule, which is a lot better than the power efficiency of the plain CPU setup.

That Arria 10 FPGA is rated at 1.36 teraflops of raw performance, and Chung said the FPGA was 
running at 270 MHz but Microsoft hoped with floorplanning and other tweaks it could boost that 
to around 400 MHz. With those tweaks, Chung hopes to boost the utilization of the FPGA from 
about 35 percent of its capacity to 89 percent, and could drive the ImageNet-1K benchmark as 
high as 880 images per second.

For a GPU comparison, Microsoft is citing the combination of a Titan X GPU graphics card, which 
has 6.1 teraflops of single-precision floating point math, paired with a Core i7-5930K processor 
from Intel. With the Titan X doing the heavy lifting, the ImageNet-1K test can burn through 
4,129 images per second and that setup burns 475 watts for 11.4 gigaoperations per second per 
joule.

This brings up an important point. In a deep learning cluster, the CPUs are mostly doing bulk 
transfers of data to the FPGAs for processing and are mostly idle, says Chung. So if you have a 
dedicated deep learning cluster, these idle chips consume power but they can’t do any real work. 
In the Azure cloud, Microsoft can put those idle Xeons to work doing something else.

“In this calculation, we are factoring in total server power, but that is not exactly quite right 
because in the datacenter we often have many tasks, and the CPUs are mostly idle and you can 
use them to do other kinds of work. So it is not clear if you really want to include the server,” 
says Chung.

We say this: put the application that uses the neural nets on the CPU part of the Open Cloud 
Server and have it constantly classifying new photos, then use the FPGA or GPU accelerators that 
are constantly training the neural nets. This way, you get a frontal lobe, complete.

The point is, the FPGA is not looking too shabby in terms of gigaops per joule, but Chung did 
point out that Microsoft is still working with underutilized FPGAs.

“We have a small team of developers who have worked on this for a very short time compared to 
a community that has worked really hard to make this run very fast on a GPU,” Chung explained. 
“We know that we actually have quite a bit of headroom. In fact, these are just projections, and 
please don’t hold me to them, and if we did some floorplanning and scaled out the designs and 
maximized all of the FPGA, we could push that to around 880 images per second and there we 
will start to see some very interesting energy efficiency numbers.”

Because the Arria 10 FPGAs pack so much more of a wallop compared to the Stratix V FPGAs, 
Microsoft thinks it can make up the difference between GPU and FPGA training performance with 
server node scale – particularly with the Catapult FPGA fabric at its disposal. But Chung and his 
colleagues are already looking ahead. “What I am really excited about are the Stratix 10 FPGAs 
will be using Intel’s 14 nanometer process and will have up to 10 teraflops per device. And that 
is when I think this space gets really interesting,” says Chung.

Microsoft’s embrace of programmable chips knowns as FPGAs is well documented. But in a paper 
released at the end of 2016, the software and cloud company provided a look into how it has 
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 fundamentally changed the economics of delivering hardware as a 
service thanks to these once-specialty pieces of silicon.

When Facebook embarked on its Open Compute Initiative and built 
its own servers it had a similar goal; to  innovate on hardware at 
a speed closer to software. But in redesigning its very chips for a 
specific workload Microsoft is taking this idea a step further. Burger 
looks at this like a different type of computing, likening a general 
purpose CPU that processes each instruction in an in-order sequence 
on a processor as temporal computing. FPGA’s he says are spatial 
computing, with an instruction laid out in hardware on the chip and 
the data funneled through the right path.

According to one source, the Catapult hardware costs less than 30% 
of all of the other server gear, consumes less than 10% of the power 
and processes data twice as fast.

Bing was actually one of the first test cases for Project Catapult back 
in 2014. But after Burger built a server that could work for Bing, 
Microsoft decided that it didn’t make economic sense to have an 
entire FPGA effort that only worked in one aspect of its business. So 
Burger started over and built an architecture that could support all of 
Microsoft’s scaled out businesses, from Bing to Azure and even one 
day, to machine learning.

Because it wasn’t enough to just speed up the processing of search 
on a node, and instead think about how to use FPGAs to speed up 
things like networking, Burger and his team came up with a different 
architecture.

Instead of having the FPGAs in a cluster of servers talk to a top 
of rack switch, the FPGAs sit between the servers’ NICs and the 
Ethernet network switches. Thus, all of the FPGAs are linked together 
in a network and network traffic is sent through the FPGA network. 
The FPGA can still be used as a local compute node because it also 
has an independent PCIe connection to the servers’ CPU.

So the CPU can send tasks to FPGA when needed, but the FPGAs can 
also communicate together to accelerate networking. In this case, 
the FPGAs can be used as a network processor, which allows Azure 
to offer incredibly low-latency in its cloud business. 

This architecture allows some pretty powerful things to happen. 
Azure can add or support new networking protocols. Elements such 
as new encryption technology can be applied universally. And while 
Burger was cagey when asked about how quickly the FPGAs can be 
re-programmed, the sense was that it would take weeks not months.

The biggest challenge for Microsoft as it embarks on this new strategy 
are poor designs, and trying to apply FPGAs to workloads that aren’t 
big enough to reap the reward. For example, Burger says, “machine 
learning is not a big enough workload to go to scale yet.”

“When you go to scale 
like we have, with tens 
of thousands of servers 
running a service that 
is generating a lot 
of revenue, you can 
afford to run a really 
crack team of 10 
hardware designers to 
be perpetually keeping 
their image up with 
the software,” says 
Doug Burger, the head 
of Microsoft’s Project 
Catapult.
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 At the end of the day Burger’s team has to ensure that every 
request for a design pays for the hardware cost of designing the new 
image. Before we had massive workloads that benefited from more 
specialized and efficient computing FPGAs were an expensive luxury 
for defense and rarified applications.

Microsoft’s real insight is that now FPGAs can be economical for 
cloud giants. And that it figured out how to use them in a distributed 
fashion.

* * * *

Well before the Intel acquisition of Altera and the news about 
Microsoft’s use of the Catapult servers, which feature FPGAs to 
power their Bing search engine and other key applications, it has 
been clear that the FPGA future is just starting to unfold. With all the 
pieces in position in terms of the vendor ecosystem, understanding 
where their value might be for actual applications beyond where one 
might have expected to find them ten years ago is still something of 
a challenge. But that picture is getting clearer.

In his 25-year career working with FPGAs, UCLA’s Dr. Jason Cong has 
watched the devices move from purpose-driven implementations, 
to devices for prototyping and now, in more recent years as 
computing devices and accelerators. Cong has developed a number 
of key technologies to push FPGA functionality and programmability 
forward, something that FPGA maker, Xilinx, has historically been 
interested in. The company acquired one of Cong’s developments, 
the AutoES tool (renamed Vivado HLS after the 2011 purchase 
and also acquired a scalable FPGA physical design tool via Cong’s 
Neptune Design Automation startup in 2013. Other startups include 
Aplus Design Technologies, a UCLA spin-out company that developed 
the first commercially available FPGA architecture evaluation and 
physical synthesis tool—something that was licensed by most FPGA 
makers until it was acquired and eventually pulled into Synopsys in 
2003.

Much of this development in the 1990s until more recently has been 
aimed at the prototyping space, but Cong is seeing a new wave 
of options for FPGAs as compute engines and accelerators for a 
number of workloads, including more prominently, deep learning and 
machine learning. “The future will be accelerators with the CPUs there 
to interface with the software, handle scheduling, and coordination 
of tasks, but the real heavy lifting will be done by accelerators.” 
This includes GPUs, he says, but the single instruction, multiple data 
limitation (SIMD) limitations are clear and while FPGAs with their 
programmable fabric, customizable logic and interconnect, and low 
power are an appealing option, the programmability needs to be 
stepped up—and quite significantly.

Although Cong believes that GPUs will continue to dominate on the 
training side of deep learning, there is great promise ahead for what 
they might provide on the inference front. For instance, his team 
put together a study based on the inference for a convolutional 
neural network and showed the FPGA as capable of offering 350 

By enabling the FPGAs 
to generate and 
consume their own 
networking packets 
independent of the 
hosts, each and every 
FPGA in the datacenter 
can reach every other 
one (at a scale of 
hundreds of thousands) 
in a small number of 
microseconds, without 
any intervening 
software. This capability 
allows hosts to use 
remote FPGAs for 
acceleration with low 
latency, improving 
the economics of the 
accelerator deployment, 
as hosts running 
services that do not 
use their local FPGAs 
can donate them to a 
global pool and extract 
value which would 
otherwise be stranded. 
Moreover, this design 
choice essentially 
turns the distributed 
FPGA resources into an 
independent computer 
in the datacenter, at 
the same scale as the 
servers, that physically 
shares the network wires 
with software.
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 gigaflops per second in under 25 watts—an attractive story from 
both a performance and efficiency angle.

Cong did not seem stunned at the $16 billion Intel acquisition of Altera 
last year, noting the opportunities for efficiency in the datacenter, 
both for the underlying networking and communications gear that 
uses FPGAs, but for a new range of application in machine learning, 
genomics, compression and decompression, cognitive computing, 
and other areas. “We welcomed this move as well because anything 
that brings the FPGA closer to the CPU means the latency is reduced—
this is something we’re working on in  a paper that will compare the 
Intel platform on QPI over existing PCIe. It will be very favorable for 
many new applications, and even more favorable when Intel puts the 
FPGA in the same package as they’re expected to do in the future.” 
Additionally, one of the startups Cong co-founded, Falcon Computing, 
which is working with machine learning libraries for FPGAs, they 
have been able to show how it is possible to reduce machine learning 
(inference) workloads from four servers to one using such libraries 
and an FPGA card. Cong says the results of this will be published 
soon and show a new range of potential machine learning and deep 
learning capabilities coming to FPGAs.

“There is full confidence in Intel’s manufacturing capabilities to bring 
this all to the same package, but the real risk is on the programming 
side,” Cong says. “Personally, I don’t think OpenCL is the answer 
as it is now. Look at all the datacenters where it’s not being used 
(big data processing uses Hadoop and Spark, HPC is OpenMP and 
MPI).” This is something Falcon Computing is focusing on—taking 
these languages and mapping them to OpenCL automatically without 
losing performance.

One can imagine how a company like Falcon Computing, which is one 
of only a few focused on bringing low-level capabilities for FPGA with 
a higher-level interface might be attractive to the handful of FPGA 
makers. We know that Cong’s previous startups have often found 
a home at Xilinx, but it is worth questioning what tooling Intel will 
need to buy into (if at all) to support its FPGA initiatives over the 
next few years. In other words, we would not be surprised to see 
Falcon gets snapped up by Intel—or by Xilinx or others at some point 
in the near future.

Cong’s work at UCLA’s VLSI Architecture, Synthesis and Technology 
(VAST) lab garnered him an IEEE Technical Achievement award for 
work on making FPGAs easier to program. In 2008, Cong and a 
group of researchers were awarded a $10 million NSF Expeditions 
in Computing grant to extend over five years, which was based on 
the recognition then that the days of swift frequency scaling were 
coming to an end—but he could not have guessed even then that the 
opportunity for FPGAs as accelerators would be such a large part of 
the story.

Over the long course of IT history, the burden has been on the 
software side to keep pace with rapid hardware advances—to exploit 
new capabilities and boldly go where no benchmarks have gone 

“Von Neumann 
architectures were 
elegant and have served 
us well, but if you think 
about something like 
the human brain, there 
is no single pipeline to 
execute instruction after 
instruction; we have 
one part for language 
processing, another for 
motor control, and so 
on. These are highly 
specialized circuits. If 
you think about Von 
Neumann architectures 
as well, executing 
something simple 
such as add has many 
steps—retrieve, decode, 
rename, schedule, 
execute and write back—
there are usually five 
to ten steps, depending 
on what you want to do 
and this pipeline is not 
efficient.”

“FPGAs can be easily 
integrated into 
datacenters, adding 
20 watts as compute 
engines in a PCIe slot 
like Microsoft is doing 
with Catapult across 
thousands of nodes. 
GPUs cannot do that; 
the CPU already has 
between 200-300 watts 
so those will not fit into 
the server profile. And 
while you can design 
an ASIC and it is more 
efficient than anything 
else, they are very rigid. 
This is a time of great, 
fast change so in the 
time it takes to fab and 
ASIC, the algorithms, 
especially in deep 
learning and machine 
learning, could have 
changed significantly by 
then.”
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 before. However, as we swiftly ride into a new age where machine 
learning and deep learning take the place of more static applications 
and software advances are far faster than chipmakers can tick and 
tock to, hardware device makers are scrambling.

That problem is profound enough on its own, and is an entirely 
different architectural dance than general purpose device have ever 
had to step to. Shrinking dies and increasing reliability and speed are 
fine arts that have been mastered. But with the new algorithms that 
rise and take shape, merging and evolving with an incomprehensibly 
young, rich code ecosystem, chipmakers do not even sure where to 
begin, let alone how to integrate their ages-old wisdom.

The easy way to address this period of transition is to buy the expertise. 
The hard way is to build it. And with a machine learning code base 
that is rich and shape-shifting, there appears yet to be a standard 
“correct” approach. In the midst of all of this is a fundamental divide 
between what devices are being dreamed up to suit this new crop 
of users and what the codes they are deploying actually require, 
according to Dr. Pedro Domingos, University of Washington computer 
science professor and author of The Master Algorithm.

“In the past there was no real compelling reason to have machine 
learning chips, but that has changed,” Domingos tells  The Next 
Platform. Just as machine learning and deep learning were seeing 
a resurgence, work on the hardware and software side on GPUs 
was proving itself at scale and, along the way, paving the way for 
other research areas to push into acceleration. And it also just so 
happened that GPUs were very good at the matrix multiplication-
based problems deep learning was chewing on.

That convergence gave Nvidia a clear head start in the marketplace 
for deep learning training in particular, but as we have been reporting 
over the last couple of years, others with specialized architectures 
(from FPGAs, custom ASICs, neuromorphic chips, etc.) have seen an 
opportunity for catering to the different hardware demands for this 
segment of the market. Of course, Intel has also see the opportunity, 
snapping up Nervana Systems and Movidius—both device makers 
with machine learning optimized software stacks in tow. Despite all 
of this effort to play catch up and fight battles over who wins the 
processor shares for the wide variety of machine learning users, 
there is still a fundamental disconnect from the general purpose 
processor players and the evolving needs of the diverse machine 
learning community.

“The big companies right now; Intel and Nvidia, are still trying to 
figure this space out. It is a different mode of thinking. From a 
machine learning perspective, we can say what specific primitives 
are needed from the hardware makers, but the issue is deeper…The 
machine learning people can tell the hardware people what they want 
but the hardware people need to tell the machine learning people 
what they actually can and can’t do. It’s that interaction that will get 
interesting results.” As it stands now, throwing hardware devices at 

“We need computers 
that reduce the 
information overload by 
extracting the important 
patterns from masses of 
data. This poses many 
deep and fascinating 
scientific problems: How 
can a computer decide 
autonomously which 
representation is best 
for target knowledge? 
How can it tell genuine 
regularities from chance 
occurrences? How can 
pre-existing knowledge 
be exploited? How can 
a computer learn with 
limited computational 
resources? How can 
learned results be made 
understandable by us?”
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 the wall to see what sticks is a wasteful approach—and even less 
useful with such a quickly evolving code base.

“Deep learning is just one type of machine learning. Just because 
there are chips that are good for deep learning doesn’t mean they 
will be good for other types of machine learning,” Domingos says. 
The real question hardware makers need to consider is what will 
happen when yet a new wave of machine learning comes in; how can 
the hardware be flexible enough to support it and if there is some 
set of primitives that can be implemented in hardware, those could 
change over time as well.” There are some primitives that haven’t 
changed much over the last five years during the new golden age of 
machine learning, and by focusing on these, Domingos says, Intel 
and other companies can get an early foothold.

It can be confusing for us in machine learning but for a company like 
Intel, where they are used to things being reliable and rigid, machine 
learning takes a dramatically different mentality. “For machine 
learning where things are statistical to begin with, not everything 
needs to be in its place and defined. There is a big opportunity here, 
but the mental transition to this way of doing things—of letting 
things work 80% of the time versus near 100% in an application 
is better than not having anything at all—and better than having a 
bunch of pre-programmed rules that only catch 5% of the potential 
use cases.”

But the general purpose hardware camps are planting their flags 
in machine learning now, building the software underbelly as they 
go; afraid to miss out on a potentially lucrative market. After all, 
it wasn’t long ago that Intel stated that over half of all workloads 
running in datacenters will have a machine learning component. On 
a technical level, that sounds overblown—and one has to wonder 
what Intel means by machine learning. Is this a catch-all definition 
for advanced analytics or is it actually a new layer of technology 
layered on top of all of the other database, data management, and 
other tools and applications as a top-level intelligence tie? If it’s not 
overblown, can we say that in the next five years we will see the 
death of static analytics? Either way, big companies are taking big 
steps to plant a stake in the ground—several for different machine 
learning workloads, as it turns out (Intel’s Knights Mill and Nervana/
Movidius acquisitions) and Nvidia’s many chips for deep learning 
training and inference (Pascal, M40/M40, Tesla series, etc.).

So with the understanding that general purpose processing options 
are still lagging behind in terms of real value to the extensive, growing 
list of machine learning applications, what will win and lose? One 
answer is to look to custom ASICs, which several of the startups, 
especially those focused on deep learning, are seeing as the path 
forward.

“The thing about machine learning that is key is that there are two 
sides to the problem; the learning and the model that’s produced 
from that learning. Once you’ve learned a model it’s really just a 
simple program and that is easy to implement in an ASIC. But the 

“The invention of the 
microchip was, and still 
is an amazing thing; 
it is super-reliable, it’s 
completely deterministic, 
and it lets us keep 
building things because 
solid state electronics 
are so reliable. No 
other area has this 
amazing gift. Not 
chemical engineering, 
not mechanical 
engineering—they have 
to live with all the crap 
and noise and things 
that break. But in 
computer science, we 
get to live in the real 
world; a world where 
we build programs. 
And machine learning 
is taking us back 
to the real world. 
It is statistical. It is 
probabilistic. And we 
don’t know always know 
why things work or don’t 
all the time.”
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 problem is, you don’t know what that will be until you have the 
data—so that means a different ASIC for the first learning part.” That 
can be expensive up-front and besides, models evolve, rending an 
ASIC useless without an ability to rapidly reconfigure—something an 
FPGA should work well for.

FPGAs are another possible accelerator for deep learning in particular 
and in fact, neural networks can be seen as a “soft” version of a 
neural network. The problem here, as with custom ASICs, is that the 
problem is not known until the data informs it. In other words, all 
you can get out of an FPGA or neural network is a subnetwork. So 
while it might do well for part of the workload, it can’t do it all.

Of course, GPUs, FPGAs and custom ASICs aren’t the only promising 
hardware trends on the horizon. Domingos points to neuromorphic 
devices as a promising area to watch. “Building a neuron out of 
digital devices is already vastly more efficient than generic hardware 
and software stacks for deep learning. Opinions are divided here but 
this is one promising path for efficient semiconductor devices that 
can tackle these workloads well.”

For Domingos, the hope is that we will start to see some core 
primitives baked into hardware and for further unification of the 
software tooling to support various machine learning workloads. 
“”We are going to see that unifying frameworks at the software level 
will migrate into the hardware (logic, graphical models, Bayesian 
networks, etc.). Things have to become standard for machine learning 
in key areas, particularly graphs and similarity computations. This is 
an area where there will be progress,” Domingos says, but as he 
agrees, on the hardware front it’s still anyone’s game—and a game 
played on many fields to boot.

Other luminaries see the changing landscape for machine learning 
and deep learning hardware from a slightly different perspective. 
Among those we spoke with is one of the so-called “fathers” of deep 
learning, Yann LeCun. 

LeCun is the inventor of convolutional neural networks, which 
eventually ignited artificial intelligence programs at companies like 
Google, Facebook, and beyond. Like others who have developed 
completely new approaches to computing, he has an extensive 
background in hardware, specifically, chip design, and this recognition 
of specialization of hardware, movement of data around complex 
problems, and ultimately, core performance, has proven handy.

LeCun’s research work at Bell Labs, which is where his pioneering 
efforts in deep learning began in earnest, coupled both novel hardware 
and software co-designs and even today, he is known for looping in 
the server side of the machine learning and neural network story–
something he did skillfully at the 2016 Hot Chips conference. In 
addition to his presentation on the evolution (hardware and software) 
of neural nets from his experiences at Bell Labs, Facebook Research, 
and New York University (among other institutions), LeCun found 
time to talk with The Next Platform about the future of convolutional 
neural networks in terms of co-design.

“The data dictates the 
approach. The better 
algorithms are the 
flexible ones and the 
more flexible ones are 
harder to implement 
in an ASIC. That is 
different than what we 
are used to in computer 
science, but that is the 
essence of machine 
learning; it is not 
determined going in. 
This is the learning curve 
for hardware companies. 
It takes a different way 
of thinking entirely.”
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Ultimately, he paints an unexpected portrait of what future architectures sit between current 
deep learning capabilities and the next stage of far smarter, more complex neural nets. What 
is interesting about LeCun’s view is not surprising necessarily: current architectures are not 
offering enough in terms of performance to stand up to the next crop of deep learning algorithms 
as it overextends current acceleration tools and other programmatic limitations.

We talked to LeCun about the role of GPU computing for deep learning and walked away with the 
understanding that the GPU acceleration approach, while useful for training neural networks at 
massive scale, would have to evolve to tackle the other side of processing–of running the actual 
algorithms post-training. LeCun extended that argument, explaining that most training models 
are run on server nodes with four to eight GPUs and that Google and Facebook are working on 
ways to run training algorithms in parallel across multiple nodes with this setup. He also notes 
that although the general guess about how many GPUs Google has is somewhere around 8,000, 
it is actually quite a bit larger than that–scaling as it likely does with growing photo, video, and 
other datasets.

But perhaps more interesting is the idea that FPGAs are the reconfigurable device that might 
next on the neural network agenda for processing the larger nets (while GPUs remain the 
high performance training mechanism). In a very interesting admission, LeCun told The Next 
Platform that Google is rumored to be building custom hardware to run its neural networks and 
that this hardware is said to be based on FPGAs. Microsoft is testing out the idea of using FPGAs 
to accelerate its neural nets and is looking forward to the availability of much more powerful 
programmable logic devices.

The assumption here is that if Google is doing something and Microsoft is experimenting, chances 
are so is Facebook, along with several other companies that sit on the bleeding edge of neural 
networks at scale. Although little has helped us come close to understanding the $16.7 billion 
investment Intel made in purchasing Altera (in terms of astronomically high acquisition sum), 
statements like these do tend to switch on little lightbulbs. LeCun says that when it comes to the 
Google and Facebook scale, there is a wariness of using proprietary hardware. “They will actually 
use their own or use something that is programmable,” he noted, which pushes the FPGA door 
open a slight bit wider.

What began, at the early stages of LeCun’s career as a set of tasks to simply classify an image 
(plane versus car, for instance) has now become so sophisticated that Facebook, one of the 
most (publicly) extensive users of neural networks for image recognition, can search 800 million 
people to find a single face in 5 seconds.

The software side of this problem has been tackled elsewhere, most recently in conversations 
about open source efforts like Torch, Caffee, and other frameworks. But when it comes to the 
next generation of hardware for both training neural networks and efficiently running them at 
scale, how is a balance struck, especially considering the relatively “basic” computational needs 
(fast training on massive datasets, followed by highly parallelizable add/multiply operations?).

These are not new questions for LeCun. During his time at Bell Labs in the 1980s and early 1990s, 
LeCun and colleagues embarked down an early path toward custom hardware for convolutional 
neural nets. Among the developments in this area was the ANNA chip, which never found its 
way into commercial applications for Bell Labs (or elsewhere) but did signify how specialty 
hardware, in this case a “simple” analog multiplier, could be fine-tuned to chew through neural 
nets far better than existing general purposes processors. In fact, at the time, the ANNA chip 
was capable of some impressive feats, including the ability to perform four billion operations 
per second—quite an accomplishment in 1991, especially for a class of problems that was still 
emerging.
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And if you take a close look at the ANNA chip, it might become apparent that the goals haven’t 
changed much. For instance, the benefit of the chip to circuit design of ANNA is that it could 
limit traffic with the external memory, which meant the speed of the chip was not limited by 
how much computation could be put on the processor—rather, it was affected far more by how 
much bandwidth was available to talk to the outside. That design concept is coming full circle in 
the multicore world, but what it had in performance it lacked in complexity. And by design, of 
course. After all, what is the use of having an extensive array of capabilities that aren’t needed? 
And here that “configurability” term raises its head again.

There has already been a fair bit of work done on FPGAs for convolutional neural networks, 
LeCun says. For instance, he points to an early experiment in scene parsing and labelling in 
the early 2000s where the team was able to achieve reasonable accuracy at 50 milliseconds 
per frame using a Virtex-6 FPGA. While this was an ideal processing framework that involved 
no post-processing of the data, the inherent limitation of Ethernet at the time limited overall 
system performance. (Similarly, there were other limitations when the next iteration of this idea 
on Virtex FPGA was rolled out in the NetFlow architecture, which never made it into production 
due to fab problems—but this was quite a bit later).

Right around the time of the first Virtex-6 work, however, GPU computing was entering the 
scene, which proved useful for LeCun’s continued work. He points to this, coupled with other 
developments to push image recognition in particular, including the release of the 1.2 million 
training samples in 1000 categories that were part of the ImageNet dataset as revolutionary 
new capabilities. The opportunities to train and classify were exponentially increased and the 
performance of an Nvidia GPU, which at the time was able to process the data at over one trillion 
operations per second, created an entirely new playing field.

If what is needed to build an ideal hardware platform for deep neural networks is ultra-fast 
add/multiply capabilities for the actual processing on the neural network algorithm, it stands to 
reason that something “programmable” (possibly an FPGA) might serve as that base while the 
the mighty GPU should own the training space. To some extent, it has for some time, with new 
crops of deep learning use cases from Nvidia and a wealth of examples of large companies that 
are leveraging GPUs for extensive model training, although not as many for actually handling the 
processing of the network itself.

While GPUs dominate on the large-scale training side, there are also a number of other emerging 
technologies that have yet to hit full primetime and await an ecosystem. FPGAs have their place 
in this expanding ecosystem, but for users at the high end, custom ASICs (despite their cost, 
long time to market, and lack of flexibility) will continue to be a viable option. Yet another option 
still will be a custom piece of hardware that captures the benefits of both a custom part and an 
FPGA—something that is gathering momentum. 

The argument is a simple one; deep learning frameworks are not unified, they are constantly 
evolving, and this is happening far faster than startups can bring chips to market. The answer, 
at least according to DeePhi, is to look to reconfigurable devices. And so begins the tale of yet 
another deep learning chip startup, although significantly different in that its using FPGAs as the 
platform of choice.

DeePhi is a relatively new company (launched March 2016) based on efforts from teams at 
Stanford and Tsinghua University, As the startup’s CEO and co-founder, Song Yao, described at 
Hot Chips in his introduction of DeePhi (which is short for the phrase “discovering the philosophy 
behind deep learning computing”), the economics and time to market pressures matched with 
the rapid evolution of deep learning frameworks make non-FPGA approaches more expensive and 
less efficient. Yao says that CPUs don’t have the energy efficiency, GPUs are great for training but 
lack “the efficiency in inference”, DSP approaches don’t have high enough performance and have 
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a high cache miss rate and of course, ASICs are too slow to market—and even when produced, 
finding a large enough market to justify development cost is difficult.

“FPGA based deep learning accelerators meet most requirements,” Yao says. “They have 
acceptable power and performance, they can support customized architecture and have high 
on-chip memory bandwidth and are very reliable.” The time to market proposition is less 
restrictive for FPGAs well since they are already produced. It “simply” becomes a challenging 
of programming them to meet the needs of fast-changing deep learning frameworks. And while 
ASICs provide a truly targeted path for specific applications, FPGAs provide an equally solid 
platform for hardware/software co-design.

Overall, DeePhi has developed a complete automation flow of compression, compiling and 
acceleration which achieves joint optimization between algorithm, software and hardware. A 
smaller, faster and more efficient deep learning processing unit (DPU) will eventually be released 
to public. With server workloads on the horizon, DeePhi says they have already been collaborating 
with leading companies in fields of drone, security surveillance and cloud service. Yao says “The 
FPGA based DPU platform achieves an order of magnitude higher energy efficiency over GPU on 
image recognition and speech detection.” Deephi believes a joint optimization between algorithm, 
software and hardware via a co-design approach represents the future of deep learning.

To address the elephant in the room here, if all of these things are true, why aren’t we seeing 
more FPGAs appear in deep learning acceleration conversations? Because, indeed, they’re still 
awful to program.

Yao says that traditionally, FPGA based acceleration via hand coding took a few months; using 
OpenCL and the related toolchain brings that down to one month. Even still, experimental teams 
were not getting the performance or energy efficiency numbers they desired. With these facts in 
mind, the team set about to build workarounds for both the performance and efficiency problems 
while simultaneously tackling the programmatic complexity.

To these ends, DeePhi has produced two separate FPGA based deep learning accelerator 
architectures. The first is Aristotle which is aimed at convolutional neural network (CNN) 
acceleration, the second is called Descartes, which is directed at sparse LSTM (long short term 
memory) deep learning acceleration. These are matched against work that has been done 
on model compression and “activation quantization” wherein the team found that getting the 
precision down (8 bits) is perfectly reasonable—at least on this architecture.

The company’s own custom built compiler and architecture is used instead of OpenCL. As Yao 
says, “the algorithm designer doesn’t need to know anything about the underlying hardware. This 
generates instruction instead of RTL code, which leads to compilation in 60 seconds.” This is the 
result of the hand-coded IP core and design of the architecture as well as the deep compression 
techniques for model compression. “Deep compression is useful in real-world neural networks 
and can save a great deal in terms of the number of computations and the bandwidth demands.

Deep compression and data quantization are employed to exploit the redundancy in algorithm 
and reduce both computational and memory complexity. For both Aristotle and Descartes, 
evaluated on Xilinx Zynq 7000 and Kintex Ultrascale series FPGA with real world neural networks, 
the team notes up to 10 times higher energy efficiency can be achieved compared with mobile 
GPU and desktop GPU. Of course, whether or not this is a fair comparison for server-class deep 
learning workloads is up to debate since, as we are aware from many interviews, most work at 
Baidu and other companies is happening on Maxwell TitanX or, at other shops, M40/M4 combos. 
Nonetheless, especially for lighter-weight use cases, the results are noteworthy.

In short, while DeePhi might not find its way to critical mass, it shows how researchers are 
thinking about cobbling together custom solutions to meet targeted workload demands. It’s 
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useful to point out that while custom ASIC based approaches have been getting a great deal of 
attention due to some advantages over general purpose hardware and accelerators, there could 
be cheaper and, with the right software tools in place, easier options on the horizon. 

All of these points about the specialization of workloads and the needs for performance, efficiency, 
scalability, and cost consciousness lead us to the real point of this book—how will end users 
consider and adopt FPGAs? In the coming chapter we will take a look at some real-world uses of 
FPGAs in enterprise, aside from those we’ve already detailed to highlight trends.
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Chapter Five
FPGA Acceleration in Enterprise

There is a perfect storm developing that is set to whisk the once esoteric field programmable 
gate array (FPGA) processor ecosystem off the ground and into the stratosphere. Real-time 
transaction processing, hyperscale web companies (deep learning/machine learning), large-
scale business analytics, signal processing, financial services, IoT, and beyond are all looking at 
the future of FPGAs for production. 

While there were some who have already rolled out platforms featuring FPGAs at the core and 
backed by a variety of host processors (from ARM to X86), one could suggest they were too early 
to the game and still required a vast amount of expertise to program (or conversely, had too 
much sacrifice on the programmability in favor of performance side) and make use of. So what 
has changed—and with that question in mind, let’s use genomics as a prime example.

Aside from the idea that Intel will soon integrate the reconfigurable devices on its chips sometime 
in the future, there is a growing demand for what FPGAs can lend to data-rich industries, including 
the genomics market. These reasons go beyond a slowing Moore’s Law (in the face of growing 
data volumes/compute requirements), the added complication of declining costs per genome, 
and the increase in demand for faster, cheaper sequencing services. Companies like Convey 
Computing saw this opportunity a couple of years ago in their efforts to integrate FPGAs onto 
high-test server boards, but following the acquisition of their company by Micron, that future is 
on hold—and the market is open to new opportunities for FPGA-backed sequencing.

The thing is, FPGAs, even with the OpenCL hooks that companies like Altera and Xilinx have 
been touting, are not easy to work with, at least to get the ultimate performance. While using a 
higher level approach like OpenCL will expand the potential market, according to Gavin Stone, 
who worked with FPGAs for a number of years at Broadcomm, the low-level programming stuff 
is not going to go away anytime soon. The answer is to take the Convey approach and spin out a 
company that bakes that low-level programming into the device, match it against powerful host 
processors (in this case dual 12-core Xeons) and bring that to bear for genomics. The company 
he works with now, Edico Genome, is a blend of long-time Broadcom FPGA veterans and a slew 
of genomics PhDs, all of whom are trying to match FPGA and genomics expertise to an ever-
expanding market for rapid genomic analysis.

We detailed Edico earlier in this book. The emphasis is not so much due to their products or 
services being better than others, it is the level of detail we were able to extract in conversations 
with them and the fact that they were one of the first and only to jump in front of an emerging 
market with an FPGA-centered offering. This gives them unique insight into how users adopt and 
use FPGAs and how important abstraction is for end users. 

What Edico Genome is doing is interesting on the hardware and software fronts, but the real 
story of performance is in their claim that they’re able to roll out 1000 genomes per day on 
their in-house cluster, comprised of a combination of Xilinx FPGAs and beefy Xeon CPU cores–all 
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 of which combined, comprised their DRAGEN genomics platform. In 
addition to gunning for the world record there, their server offering 
is found at a number of institutions, including most recently, The 
Genome Analysis Centre in the U.K., which is well known for exploring 
emerging architectures to get the genomics job done faster (including 
using optical processors, as we highlighted here some months back).

For a team, many of whom came from long engineering careers at 
Broadcom working with FPGAs, that perfect storm is right overhead—
and genomics is at the center. “When we were designing an ASIC to 
be deployed in production, all the pre-design work is being done 
in an FPGA, but now, just in the last couple of years, the paradigm 
has shifted where FPGAs are themselves being targeted to go into 
production versus as serving as a development vehicle,” Stone 
explains.

The DRAGEN board is a full-width, full-height (similar to GPU form 
factor) that goes into a dual-processor with two 12-core Xeons, 
which function as the host processors. There are typically have 6-8 
high performance SATA drives in a RAID 0 configuration feeding the 
DRAGEN to target I/O bottlenecks. The system is strung together 
with Infiniband and is deployed in a 2U rackmount configuration. 
The company is selling this as preconfigured servers, which they 
can scale at will. It is one Xilinx-based DRAGEN FPGA board per host 
server.

The typical configuration for a high throughput center is several 
sequencing instruments (Illumina more than likely), which are 
connected via 10GbE to high performance storage and the data 
streams off the sequencers to there with a scheduler underpinning 
it to gather complete runs off the sequencers and over as DRAGEN 
runs. One DRAGEN card can handle the entire throughput of ten of 
the highest end Illumina sequencing cluster, Stone says.

There might be two to four DRAGEN servers to support ten or so 
Illumina setups, but Stone says their implementation in house of 
20 DRAGEN servers is the largest to date—and that is the one that 
is set to garner them a world record for genomes processed per 
day. While some FPGA approaches have used the host CPU as a 
secondary element, in this case the 12-core Xeons play a critical role 
with both FPGA and CPU being constantly fed with utilization Stone 
says is almost 100%.

Interestingly, Edico Genome has had a partnership to develop on the 
FPGA with Intel since before the Altera deal was announced. Of even 
greater interest is that they are currently using Xilinx FPGAs in their 
custom solutions. And to add one extra meaty bit of information, 
these genomics machines with Edico Genome’s DRAGEN FPGA boards 
are a bit different than what we’ve seen in many FPGA installations 
where the host CPU takes a backseat. Instead of using wimpy ARM or 
other lower-power cores to feed the system, these systems sport a 
dual 12-core Intel Xeon processors—letting those CPUs chew on one 
part of the workload while another parallelizable set of instructions 
hum away in reconfigurable fashion on the FPGA.

“The general purpose 
processors are not going 
to be able to keep up 
with the data driving all 
of this, Moore’s Law is 
slowing down or at least 
becoming a constant for 
now, and in genomics, 
which will in the next 
ten years be the ‘biggest 
of all big data’ there is 
a clear reason why the 
popularity is growing, 
and this is why Intel 
acquired Altera for 
us, why going into 
production with an FPGA 
for production genomics 
work makes good 
sense.”
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 The value proposition for any company using FPGAs as the basis of 
their workloads is the same, however. To get the most performance 
out of their applications by blending CPU and FPGA—and exploiting 
that FPGA to the fullest with programming approaches that indeed, 
might prove barrier to entry to some, but when done properly, can 
lend enormous performance advantages. The next big wave of FPGA 
use will, according to Xilinx and Altera in several past conversations, 
be driven by the OpenCL programming framework and while this 
will open a wider user base, Stone says there is still room for 
specialization, particular in genomics.

“OpenCL makes FPGAs easier to program but it adds an extra layer 
of abstraction, so it’s like programming to Java versus machine code. 
It’s easier for more people, but you don’t get quite the performance 
you would if you programmed down at the machine level,” Stone 
notes. He says that while Intel is a current partner and they will 
indeed roll out their own FPGA-based servers sometime in the future, 
this is not a future barrier to their business. “FPGAs are a dedicated 
processor for the genomics tasks. The barrier to entry is higher but 
the performance improvements are significantly better once you 
get down to the machine level with the FPGA and have the domain 
expertise that you get from hiring PhDs and genomics experts.”

In the meantime, companies like Edico Genome are trying to make 
the case for why FPGAs make sense for genomics, something that has 
been a constant push since the company got its start in 2013. There 
are still relatively few in the genomics industry that truly understand 
what adding FPGAs into the mix means in terms of performance and 
capability, but he says that their installation on site where they do 
genomics runs as a service for existing companies shows that it’s 
possible to take on those 1000 human genomes—something that 
even large supercomputers can’t do. And all of this is done in a 
relatively small footprint.

Genomics and the life sciences generally has been looking to FPGAs 
for specific workload requirements, but there are other wider-ranging 
areas that can make use of FPGAs. Consider large-scale business 
analytics, for instance.

While much of the work at Chinese search giant Baidu that made 
news in 2016 focused on deep learning and GPUs, there are some 
interesting FPGA directions the company has taken for analytics. As 
Baidu’s Jian Ouyang detailed at the 2016 Hot Chips conference, Baidu 
sits on over an exabyte of data, processes around 100 petabytes per 
day, updates 10 billion webpages daily, and handles over a petabyte 
of log updates every 24 hours. These numbers are on par with 
Google and as one might imagine, it takes a Google-like approach to 
problem solving at scale to get around potential bottlenecks.

Just as companies like Google are looking for any way possible 
to beat Moore’s Law, Baidu is on the same quest. While the exciting, 
sexy machine learning work is fascinating, acceleration of the core 
mission-critical elements of the business is as well—because it has 

“The advantage is being 
able to run whatever 
analysis pipelines are 
needed; that’s the 
advantage of going 
into production with 
an FPGA versus an 
ASIC—there are a lot 
of different genomic 
analysis pipelines. 
We can analyze RNA, 
agricultural biology, 
different pipelines for 
cancer research—all 
of these have widely 
varying pipelines and 
some are just nuanced, 
but they all require 
something different to 
be loaded into the FPGA 
before that run.”
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to be. As Ouyang notes, there is a widening gap between the company’s need to deliver top-end 
services based on their data and what CPUs are capable of delivering.

As for Baidu’s exascale problems, on the receiving end of all of this data are a range of frameworks 
and platforms for data analysis; from the company’s massive knowledge graph, multimedia tools, 
natural language processing frameworks, recommendation engines, and click stream analytics. 
In short, the big problem of big data is neatly represented here—a diverse array of applications 
matched with overwhelming data volumes.

When it comes to acceleration for large-scale data analytics at Baidu, there are several challenges. 
Ouyang says it is difficult to abstract the computing kernels to find a comprehensive approach. 
“The diversity of big data applications and variable computing types makes this a challenge. It 
is also difficult to integrate all of this into a distributed system because there are also variable 
platforms and program models (MapReduce, Spark, streaming, user defined, and so on). Further 
there is more variance in data types and storage formats.”

Despite these barriers, Ouyang says teams looked for the common thread. And as it turns out, 
that string that ties together many of their data-intensive jobs is good old SQL. “Around 40% of 
our data analysis jobs are already written in SQL and rewriting others to match it can be done.” 
Further, he says they have the benefit of using existing SQL system that mesh with existing 
frameworks like Hive, Spark SQL, and Impala. The natural thing to do was to look for SQL 
acceleration—and Baidu found no better hardware than an FPGA.

These boards, called processing elements (PE on coming slides), automatically handle key SQL 
functions as they come in. With that said, a disclaimer note here about what we were able to 
glean from the presentation. Exactly what the FPGA is talking to is a bit of a mystery and so 
by design. If Baidu is getting the kinds of speedups shown below in their benchmarks, this is 
competitive information. Still, we will share what was described. At its simplest, the FPGAs are 
running in the database and when it sees SQL queries coming it kicks into gear.

One thing Ouyang did note about the performance of their accelerator is that their performance 
could have been higher but they were bandwidth limited with the FPGA. In an evaluation, Baidu 
setup with a 12-core 2.0 Ghz Intel E26230 X2 sporting 128 GB of memory. The SDA had five 
processing elements (the 300 MHzFPGA boards seen above) each of which handles core functions 
(filter, sort, aggregate, join and group by.).

To make the SQL accelerator, Baidu picked apart the TPC-DS benchmark and created special 
engines, called processing elements, that accelerate the five key functions in that benchmark 
test. These include filter, sort, aggregate, join, and group by SQL functions. (And no, we are not 
going to put these in all caps to shout as SQL really does.) The SDA setup employs an offload 
model, with the accelerator card having multiple processing elements of varying kinds shaped 
into the FPGA logic, with the type of SQL function and the number per card shaped by the specific 
workload. As these queries are being performed on Baidu’s systems, the data for the queries 
is pushed to the accelerator card in columnar format (which is blazingly fast for queries) and 
through a unified SDA API and driver, the SQL work is pushed to the right processing elements 
and the SQL operations are accelerated.

The SDA architecture uses a data flow model, and functions not supported by the processing 
elements are pushed back to the database systems and run natively there. More than any other 
factor, the performance of the SQL accelerator card developed by Baidu is limited by the memory 
bandwidth of the FPGA card. The accelerator works across clusters of machines, by the way, but 
the precise mechanism of how data and SQL operations are parsed out to multiple machines was 
not disclosed by Baidu.We’re limited in some of the details Baidu was willing to share but these 
benchmark results are quite impressive, particularly for Terasort.



54Chapter 1 

 On yet another end of the acceleration spectrum is the hybrid role of 
the FPGA as both server and switch part—something industries like 
financial services are seeing as boon.

Drawing the lines where the server ends and the network begins 
is getting more and more difficult. Companies want to add more 
intelligence to their networks and are distributing processing in their 
switches to manipulate data before it even gets to the servers to 
be run through applications. The need for higher bandwidth and 
lower latency is in effect turning switches (and sometimes network 
adapters) into servers in their own right.

This is not a new idea, but the server-switch hybrid seems to be 
taking off in physical switches just as the use of virtual switches 
are taking off on servers equipped with hypervisors and supporting 
virtualized workloads. In the financial trading arena, applications 
generally run on bare metal for performance reasons because 
nanoseconds count, and so instead of a virtual server-switch hybrid, 
trading companies want a physical box that has low latency on the 
switching and enough brains to do useful work that might otherwise 
be done by servers much further down the line from an exchange.

We almost have to infer the utility of hardware or software from the 
fact that they exist and that companies are selling and supporting 
them, barring the occasional customer who will talk and explain how 
and why they chose to implement a particular machine.

So it is with hybrid server-switches, which typically marry high-
bandwidth, low-latency Ethernet switches with compute and storage 
that is sufficient to do a reasonable amount of processing all in the 
same box. Such a hybrid machine was not just inevitable because 
X86 processors became embedded inside of switches over the past 
few years, but that has certainly helped make it easier to move Linux 
applications that once ran on separate servers or appliances onto the 
switch itself. Switches have always included field programmable gate 
arrays, or FPGAs, to help goose the performance of certain functions 
that are ancillary to the central switching ASIC but which are of too 
low of a volume to merit being etched directly in silicon. In some 
cases, switch makers are putting beefier FPGAs in the switches, 
giving them multiple kinds of compute to chew on data as it moves 
back and forth across the switch.

This is precisely the tactic that Juniper Networks is taking with its new 
server-switch, which has a mix of X86 and FPGA compute embedded 
in it to accelerate financial applications.

Andy Bach, chief architect for Juniper’s financial services group, 
tells The Next Platform  that the increased message rates required 
by trading companies, which is growing at somewhere around 30 
percent to 50 percent per year, puts enormous pressure on networks. 
On the CPU front, processor clock speeds are more or less flatlined 
at around 3.5 GHz, depending on the architecture, and that means 
companies can’t push performance on single-threaded applications 
much harder. Aspects of trading applications do not easily parallelize 
and are dominated by single-threaded performance of CPUs. And 

Because of the 
competitive advantages 
that specific technologies 
yield for big banks, 
hedge funds, and high 
frequency traders that 
invest our money and 
make a zillion quick 
pennies on it every 
second, it is rare indeed 
to find a financial 
services customer that 
will admit to using a 
particular technology in 
their infrastructure.
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while high frequency trading fostered a market for very low latency Ethernet switches, the 
switching speed pretty much “bottoming out” at a couple of hundred nanoseconds, says Bach, 
and so switch makers and financial services firms alike are looking for new ways to boost 
performance and decrease response times. (Bach ran the networks at NYSE-Euronext for more 
than two decades, so he has sat on the customer side of the table for a lot longer than the vendor 
side and knows these issues well.)

But there is, Bach explains, another factor that is pushing companies to rethink their switching 
infrastructure.

“We are starting to see another step function in processing demand,” says Bach. “We went 
through the era of high frequency traders, and their main advantage was speed and everyone 
has pretty much caught up. With social media and live news feeds, that really changes the game 
in terms of what kind of processing capacity you are going to need. Just think about sorting 
through a live Twitter feed and figuring out what is good news and what is not, what is relevant.”

The stock ticker coming off the exchanges–the crawl coming off Wall Street–is barely any data 
at all by comparison. But the consolidated trade/consolidate quote ticker, or CTCQ, averages 
around 1 million messages per second, and the options feed can burst to 20 million messages 
per second and the equities feed is on the same order of magnitude; messages sizes in the 
financial industry average somewhere between 140 bytes and 200 bytes. A Twitter feed is on 
the order of millions of messages per second, and other social media sites like LinkedIn and 
Facebook also have very high message rates that are comparable to other financial feeds. (It 
depends on if you take the whole feed or just parts of it.)

Live news feeds are also increasingly part of the trading algorithms, and it is funny to think 
about the news last week that Intel might be acquiring Altera hitting the street actually coursing 
its way through financial applications, with that very news possibly being chewed on by a mix of 
Xeon GPUs and Stratix FPGAs and turned into money. CNBC reported that a fast-acting trader 
(more likely an application, not a person) reacted within seconds of the Altera rumor hitting 
Twitter and turned options worth $110,350 into a $2.5 million profit in 28 minutes as the market 
went crazy and drove Altera’s stock up 28 percent. That fast reaction on the Altera news could 
have been a bot waiting for such news to come along, plain old luck, or insider trading.

Suffice it to say, there is still an arms race in the financial services industry, and this time it is 
about using data analytics to pick the right time to trade, and then executing quickly – not just 
moving quickly for its own sake.

Juniper would not bother to create a God box switch if there were not customers asking for such 
a machine, and the wonder is that Juniper has not done it to date with rivals Cisco Systems 
and Arista Networks already doing it and upstart Pluribus Networks making a lot of noise last 
year about its own server-switch half-blood. Bach can’t reveal the early customers who helped 
it develop and test is QFX application acceleration switch, but he did tell The Next Platform that 
the Chicago Mercantile Exchange, which runs the world’s largest derivatives trading operations, 
will be using the new switch to route data selectively to its matching engines.

Programming FPGAs is not easy task, so Juniper is partnering with Maxeler Technologies, which 
has tools that can convert dataflows constructed in the Java language to the Verilog language 
that encodes the FPGA’s functions. The QFX-PFA includes a complete development environment 
and technical support. Maxeler has expertise not only in financial services, but also in the oil and 
gas industry and in the life sciences arena and that means this switch could see some action in 
these markets, too.

The FPGA-enhanced switch from Juniper will have a number of different use cases, according 
to Bach. Putting the compute in the switch to ingest hundreds of global data sources, combine 
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them, and parse them out to customers with specific feed requirements can be done inside the 
switches, reducing latency and replacing hundreds of servers. The exchanges have to maintain 
multiple matching engines for their order books, and this can also be partially implemented on 
the switches instead of solely on servers. In one test, a customer with a trading plant comprised 
of 1,000 servers and 1,500 network ports with a 150 microsecond latency was able to use the 
FPGA to implement part of the work, cutting the server count down to 60 machines and the 
switch port count down to 1,000 ports while at the same time reducing the latency to under 100 
microseconds for the matching engine application.

The exchanges can also use the compute inside of the enhanced QFX5100 switch to do pre-trade 
risk analysis on the fly, as transactions are coming across the network, with a lot lower latency, 
assessing if trades are bogus or not. The other kind of risk analysis associated with trading – 
checking to see if a trade is smart or not – can also be done on the fly inside the switch, says 
Juniper.

This chapter has only discussed a few of the areas where FPGAs are finding a fit in the enterprise. 
With further development of machine learning for FPGAs to branch into more analytics, code and 
other hooks for HPC, and more users tapping into reconfigurable devices in the cloud, this set will 
grow. With this in mind, we will take a look at how some researchers are thinking about the next 
generation of FPGA development and how that work can translate into eventual business value. 
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Chapter Six 
FPGA Research Horizons

Even if FPGAs do not represent a new technology, the increase in attention from both research 
and enterprise has been staggering. Accordingly, there have been many research endeavors 
on both the hardware and software fronts to scrape as much performance as possible from 
reconfigurable devices. 

In this chapter we will take a look at some of the innovative ways researchers are tweaking FPGA 
devices and programming environment to help foster a clearer picture about what lies ahead. 
The momentum around this topic in research is similar to what we saw in the mid-2000s with 
GPUs, which had a few development use cases and then exploded to become an industry of their 
own. 

In the last couple of years, much has been written about the usefulness of GPUs for deep learning 
training as well as, to a lesser extent, custom ASICs and FPGAs. All of these options have shown 
performance or efficiency advantages over commodity CPU-only approaches, but programming 
for all of these is often a challenge.

Programmability hurdles aside, deep learning training on accelerators is standard, but is often 
limited to a single choice—GPUs or, to a far lesser extent, FPGAs. With this in mind, a research 
team from the University of California Santa Barbara has proposed a new middleware platform 
that can combine both of those accelerators under a common programming environment that 
creates enough abstraction over both devices to allow a convolutional neural network to leverage 
both with purported ease.

The idea that using programmable devices like FPGAs alongside GPUs in a way that makes 
anything easier for programmers sounds a bit far-fetched, but according to the research team, 
which did show impressive results on an Altera DE5 FPGA board along with an Nvidia K40 GPU, 
the approach can “provide a universal framework with efficient support for diverse applications 
without increasing the burden of the programmers.”

“Compared to GPU acceleration, hardware accelerators like FPGAs and ASICs can achieve at least 
satisfying performance with lower power consumption. However, both FPGAs and ASICs have 
relatively limited computing resources, memory, and I/O bandwidths. Therefore, it is challenging 
to develop complex and massive deep neural networks using hardware accelerators. Up to now, 
the problem of providing efficient middleware support for different architectures has not been 
adequately solved.”

They also looked at the trade-offs and relative differences between the two devices in terms 
of energy consumption, throughput, performance density, and other factors, and found it is 
possible to balance the framework to favor the better device for parts of the workload.

An API sends requests to the scheduling middleware on the host code, which can then offload 
part of the execution threads to CUDA or OpenCL kernels. These kernels have a shared virtual 
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memory space. The scheduling and runtime support are abstracted from the programmer’s view 
and handled by the API, which serves as the bridge for the applications to either device.

The effort, called CNNLab allows applications to be mapped into the kernels using CUDA 
and OpenCL using the team’s middleware as a bridge between the neural network and the 
accelerators. The framework is flexible, meaning tasks can be allocated to either device and a 
common runtime is used for both architectures.

In developing the middleware framework, the team did some interesting benchmarks to understand 
the relative differences between GPUs and FPGAs for different deep learning approaches using a 
hardware prototype they built using the Nvidia and Altera parts to understand the differences in 
execution time, throughput, power, energy cost, and performance density. These results alone 
are worth a look.

The team’s results show that “the GPU has better speedup (100x) and throughput (100x) against 
FPGAs, but the FPGAs are more power saving (50x) than GPU.” They also note that the energy 
consumption for convolutional neural networks across both devices is approximately similar. In 
terms of performance density, both are also not far from each other, with the FPGA in the 10 
gigaflops per watt range with 14 gigaflops per watt for the GPU. However, they note that the 
operational efficiency is higher for GPUs.

 Although the team was able to show speedups on their platform, they note that there are further 
developments needed. The speedup of both devices can be enhanced by better compressed 
network models. Further, they are considering how the accelerators might be paired using Spark 
or TensorFlow as the data processing backbone.

It is interesting research work in terms of the creation of a bi-directional layer of software that 
can speak both FPGA and GPU to maximize performance and efficiency, and with some work, 
one can see how boards based on both with a low-power processor can be strung together 
for convolutional neural network workloads. but if FPGAs were indeed easy to talk to and the 
OpenCL/CUDA interfaces were so easy to co-mingle, one has to wonder why this hasn’t been 
attempted already–if, indeed, it hasn’t.

The larger story here, beyond the middleware framework the team created, is how the metrics 
for both accelerators stack up in the chart above. While Microsoft Catapult and other systems 
and approaches are using FPGAs for deep learning, it is one side of the accelerator story for this 
area that has been less touted. We expect that Intel’s acquisition of Altera and its now direct 
focus on machine learning might yield more work in this area in the coming year or two.

Other researchers are seeing a product angle for future FPGA-based systems—something that 
meshes the familiar with the less ordinary (in this case, the FPGA). 

A small company that was founded by Seymour Cray in 1996, just before he died in a tragic 
car accident, that has been perfecting hybrid CPU-FPGA systems for military and intelligence 
agencies agrees that there is a future for FPGAs and came out of stealth in 2017 to aim its wares 
at hyperscale datacenters.

SRC Computers, which is based in Colorado Springs, takes its name from Seymour Roger Cray’s 
initials and was co-founded by the legendary supercomputer designer along with Jim Guzy, one 
of the co-founders of Intel and until recently chairman of PCI switch chip maker PLX Technology 
(now part of Avago Technologies), and Jon Huppenthal, who is still SRC’s president and CEO.

SRC shipped its first system to Oak Ridge National Laboratory three years later, and the company 
pivoted away from the HPC market in 2002 when it started selling its hybrid systems to defense 
and intelligence customers. Except for a few citations of its machines in academic and lab 
research, SRC has kept a relatively low profile and its 50 employees – all systems, network, and 
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 compiler experts who have been around for a while – have focused 
on making its MAP hybrid processors and Carte programming 
environment easier to program and deploy than a typical CPU-FPGA 
setup. Mark Tellez, director of business development at SRC, says 
that the company has invested more than $100 million in hybrid 
systems development since its founding two decades ago.

Companies in the financial services and oil and gas industries 
have tried just about every technology under the sun to goose the 
performance of their applications and get some competitive edge, and 
FPGAs have been something they have either toyed with or deployed 
for specific applications over the years. FPGAs have come and gone 
as platforms for research in academia and supercomputing labs, too. 
Supercomputer maker Cray paid $115 million in February 2004 to 
buy OctigaBay, a maker of supercomputers that married Opteron 
processors to FPGAs whose products were eventually commercialized 
as the Cray XD1. And even at SRC, the company backed into FPGAs 
almost accidentally when it was designing high performance clusters 
based on commodity CPU chips. The FPGAs were deployed in early 
SRC systems to replace custom ASICs, and after SRC figured out 
how to work with them, the company’s engineers decided to use 
them as compute elements in their own right rather than adjuncts.

In a briefing that Huppenthal gave recently, he explained the situation. 
“We delivered the first system with reconfigurable processors to Oak 
Ridge back in 1999,” he said. “What this showed us was two things. 
One, that the use of reconfigurable processors had a lot of merit. 
And the second thing it showed us is that if you could not program 
it, it was never going to get used.”

As usual, gluing some hardware together into a system is the easy 
part, but it has taken more than fifteen years and a dozen iterations of 
platforms for SRC to perfect the application development environment 
that makes its hybrid CPU-FPGA systems relatively easy to program. 
“We were able to work through a bit of the issues of taking a sequential 
language like C and putting it on what is essentially a parallel engine,” 
Huppenthal continued, and he contrasted this a bit to the approach 
of OpenCL being used as a platform for spreading code out from 
CPUs to GPU and now FPGA accelerators. OpenCL, Huppenthal said, 
was a parallel execution environment originally designed for GPUs 
and it has been modified to run a subset of C on the GPU and now on 
the FPGA. But there the problem is that you have what Huppenthal 
calls “an FPGA on a stick,” by which he means that the accelerator is 
hanging off of the PCI-Express peripheral bus, which is too slow, and 
is not sharing main memory with CPU in the hybrid system. And as 
such, data has to be moved back and forth between processors and 
accelerators and something – the CPU – has to be put in charge of 
the application and decide what gets executed where.

With the MAP hybrid processor and the Carte development 
environment created by SRC, developers working in either C or Fortran 
have no idea they are even using a machine that employs FPGAs. 
The Carte environment has a coding and debugging environment 
that runs on a client machine. When the code is put into production, 

“Instead of running 
the application on 
the processor, the 
application becomes the 
processor.”
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it is automagically split between a CPU, which can in theory be an X86, ARM, Power, or any kind 
of processor a customer needs, and an FPGA. When it started, says Eaton, SRC used FPGAs 
from Lucent, the HP semiconductor spinoff that is one of the kernels of Avago. Then SRC used 
FPGAs from Altera, and when a big generational shift came, Xilinx had the better FPGAs, and 
now the company feels Altera has the advantage and has been using them. SRC does customized 
systems – particularly given its defense and intelligence customers – so the MAP architecture 
and Carte development system has to be fairly agnostic.

The secret sauce in the MAP-Carte stack is actually a system FPGA that implements a shared 
memory interconnect, called SNAP, between the CPU and user FPGA. This kind of high-speed link 
for shared memory is something that Nvidia is working to add to future Tesla GPU accelerators 
using its NVLink interconnect and that IBM has added to its Power-Tesla hybrids through its 
Coherent Accelerator Processor Interface, or CAPI. SRC figured out how to do this many, many 
years ago, and because its volumes were not high enough to justify a custom ASIC for this shared 
memory controller, it implements it on an FPGA along with networking and other functions.

Because of this system FPGA, the Carte development environment sees a single compute resource 
and a single memory space, and the code is compiled down to the FPGA’s hardware description 
language (HDL) automatically and portions run on the X86 chip in the system as necessary. As 
Dave Pointer, director of system applications at SRC put it, “instead of running the application on 
the processor, the application becomes the processor.”

Pointer equates this to the diesel engine coming along and knocking out the steam engine.

The conversion of applications from high level programming languages like C and Fortran down 
to HDL is the tough bit, and SRC is not giving any secrets away about how its Carte software 
development tool does this so seamlessly. But with the Carte system and the hybrid CPU-FPGA 
setup, you get a few things.

The first is that customers can program their hardware to behave any way they want and to 
have the features – and only the features – they need. If you need 50 floating point units on 
your system, that is what you put on them. Also, because the application and its dataflows are 
implemented in HDL and essentially running as hardware, you get deterministic performance. 
Every time you run a routine, it behaves the same exact way. (You can’t say that about a general 
purpose CPU juggling many things.) Moreover, the FPGA can change its personality on the fly, 
allowing for mixed workloads on the hybrid nodes over the course of a day. (It takes about a 
second to change out the application personality on the FPGA, according to Huppenthal – not 
quite fast enough for context switching speeds inside of applications, but a lot faster than firing 
up a virtual machine and a whole lot faster than configuring a bare metal server by hand.) 
Because the FPGA only does the work the application requires (again, the application is the 
processor), and it executes portions of the code in parallel, the FPGA has a very high utilization 
rate and, as it turns out, very low power consumption. The combination of high parallelism and 
low power are what enables a massive amount of potential server consolidation for all kinds of 
workloads in a datacenter. There are a plethora of use cases for SRC to chase:

This energy efficiency of compute is also, as it turns out, what allows SRC to create signal 
processing and control systems that can fit inside of a drone, systems that cannot be created 
given the performance and power draw of traditional, general purpose CPUs. So MAP and Carte 
are not just a science project, but technology that has been literally battle-tested in the field. 
And, importantly for financial services, defense, intelligence, and other customers who have 
FPGA applications already, Carte will allow existing Verilog and HDL code to run on the MAP 
hybrid processors and be called as routines.

SRC has been building ruggedized rack and mobile servers for the military and intelligence 
communities for a long time using its MAP hybrids, and it even has a homegrown crossbar 
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interconnect switch called H-Bar that can be used to lash multiple MAP nodes together into 
clustered systems. But to attack the hyperscale market, SRC decided to partner with Hewlett-
Packard and create a MAP cartridge for HP’s Moonshot hyperscale system.

The Moonshot machines were launched in April 2013 and started ramping as that year ended. 
The machines have a very compact architecture and offer a lot of compute density, but given 
that the “Gemini” Moonshot chassis comes in a 4.3U form factor and has 45 compute nodes, 
you can’t put a very beefy processor on each cartridge, and that limited their appeal in many 
datacenters. You can, however,  put four fairly small processors on a single cartridge, which 
makes for interesting use cases. Or, as it turns out, you can put on an Intel Atom processor and 
two Altera Stratix IV FPGAs, as SRC has done to create its Saturn 1 server node:

The interesting bit about the Moonshot machine, explains Eaton, is that the backplane in the 
chassis has a backplane that implements a 2D torus that has 7.2 Tb/sec of aggregate bandwidth. 
This interconnect can be used to link all of the nodes in the chassis together (they can be compute 
or storage nodes) without the need for any additional switching. The two switch modules in 
the Moonshot chassis are for linking the nodes to the outside world, which can be additional 
Moonshot enclosures or the upstream network that links to users and other applications. This 
2D torus interconnect can link three nodes together in a multiple-tier, as is common for many 
applications that are based on web, application, and database tiers, or can hook up to fifteen 
nodes together in a relatively tight cluster that is more akin to the kind used in modeling and 
simulation applications in the HPC realm. The point is, by switching to the Moonshot enclosure, 
SRC doesn’t have to use its Hi-Bar interconnect to link machines together.

While the Moonshot system is an elegant and clever design, it has not been a barn burner for 
HP, and part of the reason is that there is limited appeal for the compute elements that can be 
put on a single cartridge. As to that, Eaton says: “We may be the cartridge that the Moonshot 
chassis has been waiting for.”

The Saturn 1 cartridge has a four-core Intel Xeon Atom processor on the X86 side and two Altera 
Stratix IV GX530s on the FPGA side. One of the FPGAs implements the SNAP interconnect and 
multiple virtual Ethernet ports that are used for the 2D torus interconnect and to link to the HP 
switches in the Moonshot enclosure. In most cases, SRC’s early customers are putting a compute 
node in each row of cartridges and using that as a Linux boot engine from which data gets fed 
into the remaining 42 MAP hybrid nodes in the enclosure. The MAP nodes do not run an operating 
system – it is not necessary since the nodes, by design, directly run application code – but 
customers can boot a Linux kernel on each Atom processor if they want to, according to Eaton.

SRC is charging $19,950 per node for the Saturn 1 cartridge, and that includes the bootloader 
code required by Intel and Altera for their respective Atom and Stratix processors as well as 
a license to the Carte environment. Volume discounts obviously apply. But given the kind of 
consolidation that SRC is projecting for its workloads, customers might not be buying very many 
of them.

In his presentation, Huppenthal ran some text search benchmarks on a Saturn 1 node and a 
two-socket server using a high-end quad-core Xeon W3565 workstation processor. (This one 
has a 3.2 GHz clock speed.) Based on the benchmark results, it would take 1,276 racks of these 
two-socket servers to do the same work as a rack of Moonshot systems equipped with nine 
enclosures and a total of 378 MAP hybrid processors. That is a total of 51,040 server nodes and 
408,320 cores on the Xeon side and over 10 megawatts of power. The kind of thing you might 
see at the National Security Agency, for instance.

This comparison is a bit unfair, since those Xeon W3565 processors date from 2009, back in 
the “Nehalem” days. The compression is not really 1,276 to 1. (And SRC knew that when it 
made the comparison, obviously.) If you built a cluster using two-socket machines based on the 
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latest “Haswell-EP” Xeon E5-2667 processors, which have eight cores running at 3.2 GHz and 
considerably more instructions per clock than the Nehalem Xeons did, you would need about 
314,406 cores to do the same work, and if you do the math, that would be 19,650 nodes. If 
you had dense pack, four-node hyperscale machines, that would work out to 234 racks of X86 
iron, not 1,276 racks. That is still a huge number of cores, it would still be several megawatts 
of power, and it is still a huge compression ratio for this text search example if the Saturn 1 
performs as expected.

In general, what SRC is saying is that across a wide range of applications that can be accelerated 
by FPGAs, customers can expect to get around 100X performance with 1 percent of the energy 
consumption, 1 percent of the footprint, and at under 25 percent of the cost of equivalent 
performance for X86 server clusters.

SRC trotted out one of the early customers for the Saturn 1 hybrid server node, an advertising 
startup called Jingit that is based in Minneapolis, Minnesota and that is prepping its first product 
to come to market in 2017. The company was, as most hyperscalers do, building its stack on X86 
clusters, but the nature of the service it is providing made Jingit take a stab at using the SRC 
system. (SRC has a development lab in the area, so somebody clearly knows somebody here.)

What Jingit wants to do is provide consumer marketing services at the point of sale, which in 
plain English means kicking out a custom coupon to you as you are buying something. The 
difficulty is that their backend system has to come up with whatever deal is appropriate for you, 
based on this current purchase and past purchases, in somewhere around 50 milliseconds to 130 
milliseconds, which is the time it takes for a credit card authorization to occur. It was taking a 
lot of iron to make this happen on the X86 architecture, which was bad, but the total processing 
time was the real problem.

Including the inbound and outbound message time on the credit card networks, the processing 
time to be at the current industry benchmark rate should be around 50 milliseconds, with the 
spare time to compute anything being a very small fraction of that – single digit milliseconds. 
But the processing time on the X86 clusters was pushing the total transaction time to around 
1,500 milliseconds. And 1.5 seconds in our impatient world is a lifetime, apparently. Running the 
same application on the Saturn 1 nodes, the calculations were being done in nanoseconds, and 
the response time was quicker than the jitter in the credit card network. Todd Rooke, one of the 
co-founders of Jingit, says that it is not possible to measure the speed it is happening so fast and 
the speed of the credit card networks is so variable.

SRC has been attacking various markets where you would expect to see FPGA acceleration for 
many years, but the difference this time around is that with the combination of the Moonshot 
chassis and its more sophisticated Carte programming environment, the whole shebang is 
perhaps a little easier for prospective customers to consume.

While SRC has the backing and history to launch into this space with the intelligence community 
and others, approaches from other companies taking a hybrid FPGA and CPU slant are also 
becoming more common.

For some users in high performance computing and a growing range of deep learning and 
data-intensive application segments, the shift toward mixed (heterogeneous) architectures is 
becoming more common.

This has been the case with supercomputers, which over the last five years have shifted from a 
CPU-based model to a growing set of large systems outfitted with GPUs to add number crunching 
capabilities. But as both the hardware and software ecosystems around other accelerators 
gather steam, particularly on the FPGA front, there is momentum around building systems that 
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incorporate a range of accelerators in the same system, which handle different parts of the 
application.

As one might imagine, none of this is simple from a programmatic point of view—the FPGA 
piece alone is riddled with complexity landmines. This opens the door for approaches that find a 
way to automatically discover and assign the right processor—be it GPU, FPGA, or the good old 
fashioned CPU—preferably at runtime. This might sound like a mythical software layer, one that 
can “automagically” mesh these multi-accelerator approaches together and auto-select the right 
tool for the right job, but one HPC startup says it has stitched together such a layer and can 
provide it as a software-only addition to the heterogeneous system stack, as an appliance, and 
via a cloud pulled together on Rackspace (and other providers) where FPGAs are offered and can 
be used alongside a CPU application—and in the same way from the application’s point of view.

And for a startup rolling out of the supercomputing world, the fact that they’ve secured funding 
to do this is in itself noteworthy. It is (unfortunately) quite rare that true high performance 
computing startups emerge with significant funding, but  Bitfusion,  the company with this 
multi-accelerator approach, sees a path ahead that will extend beyond the hallowed halls of 
supercomputing and find a fit for the areas where GPU and FPGA-based systems will thrive.

The key, according to the company’s CEO, ex-Intel product developer, Subbu Rama, is to be 
able to do all of this meshing seamlessly—which means that code changes and other complexity 
barriers need to be removed. After all, he agrees, FPGAs are notoriously difficult to program, 
a fact that limits their market, even with all of the progress that’s been made with OpenCL by 
companies like Altera and Xilinx. The goal of BitFusion is to provide this software layer and 
ensure that no code changes happen, even with such smart doling out of accelerator and CPU 
resources happening at runtime.

“When you have a system that has different architectures, including these three processors, 
our software layer automatically discovers what device is available, what part of the application 
is right for what device, and then it automatically offloads that part to the right device—again, 
without code changes.

Specifically, the code work they’ve done sits on top of OpenCL to talk to the various processors, 
which works with Nvidia GPUs and both Altera and Xilinix FPGAs. “We believe OpenCL will be 
the basis for multiple platforms, but it is not enough. Generally, if you have an application that 
you want to move from CPU to run on an FPGA now, there is a lot involved. We are building 
the software libraries in OpenCL, which are performance portable and highly parameterized, 
meaning it’s possible to run those same libraries on any of those three processor types. We 
discover what hardware is available and dynamically swap our libraries and that’s what makes 
us different than other approaches that have tried to do similar things in the past.”

Although this may sound like it would have to add some overhead, Rama says that if one looks 
at the majority of applications, they are using a finite set of fundamental building blocks and 
libraries. What BitFusion has done is to take those swaths of open source libraries and moves 
them into a common OpenCL framework where they can be performance portable across CPU, 
GPU, and FPGA in a way that is transparent to the user.  Internal benchmarks in a few key areas 
Rama and his team think will be viable markets for the young company include bioinformatics 
(where they reported an 10x speedup with Smith Waterman), scientific computing (they claim 
an 11x improvement for NNLS), and data analytics (based on R, NumPy, and Octave for a 31x 
boost).

There are three ways to make use of the company’s work to tie together these multiple processing 
types. First, as a standalone software layer, called BitFusion Boost (BT), which can be used as 
either an agent that can sit on top of the OS or as an accelerated Linux image users install on 
their machines. In either case, the pricing can be shifted to either a per node basis or with a 
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license fee. While we were not able to glean the licensing fees, Rama says BT is currently priced 
somewhere between $1000 and $2000 per node, according to Rama, a range which is variable 
based on how they are getting an early handle on user adoption and how the first sets of use 
cases take shape. One can imagine the market for this is going to be rather limited since only a 
certain set of users will have machines outfitted with both FPGA and GPU accelerators.

In addition to this software-only model, the company is making an appliance featuring a low-end 
Xeon, which Rama says is used mostly for orchestration. Configurations can include 4-6 FPGAs 
from either Altera or Xilnix and on the GPU front, the system can support either an Nvidia K40 or 
K80, but what is most interesting to Bitfusion is the Titan for its high performance and far lower 
price point. These come with Bitfusion’s software pre-installed in 1U, 2U and 4U form factors. 
Further, as noted previously, the company is also working with a few key cloud providers on what 
it calls the BF Supercloud, which lets users tap into an FPGA-enabled cloud provider’s boxes for 
automated acceleration.

Although this might sound compelling for some early stage users who have already seen the 
performance of the trio of accelerators in action, Bitfusion does not want to be in the hardware 
business. “We may end up going away from the appliance model at some point,” Rama explains. 
“We are experimenting with the model and cost and eventually we won’t want to be selling 
hardware, we would rather channel through OEMs and sell our software, which is the key piece.”

Aside from the potential range of applications and use cases this opens for users with existing 
FPGA and GPU combination systems (or those who might consider an appliance that is already 
equipped with such a setup) the fact is, this might be a leap forward in terms of expanding 
the FPGA in particular into new arenas. Rama says the use cases for FPGAs in particular are 
expanding, noting that what Bitfusion is doing by making it seamless to move from the CPU 
to the FPGA, is allowing companies to cut potential costs of FPGA experimentation. “Users are 
not going to be moving everything to the GPU, and certainly not to the FPGA. It might be 10% 
of an application that they are moving to a new device. They want to see how it works, how it 
performs, and that can assist with making a decision about whether or not to use a device.”

Of course, all the hardware tweaks are lost without ample research work on the software side. 

Systems built from commodity hardware such as servers, desktops and laptops often contain 
so-called general-purpose processors (CPUs)—processors that specialize in doing many different 
things reasonably well. This is driven by the fact that users often perform various types of 
computations; the processor is expected to run an Operating System, browse the internet and 
even run video games.

Because general-purpose processors target such a broad set of applications, they require having 
hardware that supports all such application areas. Since hardware occupies silicon area, there is 
a limit to how many of these processor “cores” that can be placed—typically between 4 and 12 
cores are placed in a single processor.

If the user develops an application that contains a lot of parallelism, then that application is still 
performance-bound by the number of processor cores in the system. Even if an application can 
utilize 100s of processors, in practice, the application will only see no more than 12 cores.

A new trend is that general-purpose processors can utilize data parallelism with vector instructions, 
the latest version of intel AVX can process operations on 512 bits in parallel, and the use of GPUs 
for data-parallel programs. This, however, introduces a second level of parallelism in addition to 
the cores which may be difficult to utilize in many applications.

A team from Sweden’s Royal Institute of Technology (KTH) sought to overcome these limitations of 
general-purpose processors and data-parallel vector units/GPUs, using Field-Programmable Gate-
Arrays (FPGAs). FPGAs are devices that contains logic that is reprogrammable, which means it 
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is possible to create a system inside the FPGA that is tailored to the application; in other words, 
there is no support needed to run an OS – it only requires the functionality to run a specific 
application as fast as possible.

To better understand how the Swedish team was able to create a high-level synthesis flow that 
can automatically generate parallel hardware from unmodified OpenMP programs, we had a chat 
with the authors of the full paper, Artur Podobas and Mats Brorsson.

Where is OpenMP lacking and how are FPGAs central to making up for the lack of parallelism you 
point out?

KTH Team:  By understanding the needs of the application we can create a system containing a 
large amount of very small “cores” on our FPGA and be capable of executing many more things 
in parallel than a general purpose processor ever could; even if the clock-frequency is lower 
on the FPGA compared to the CPU, the performance benefits of using more parallelism is often 
worthwhile.

While OpenMP as of version 4.0 contains support for accelerators (through the #pragma omp 
target directive), so far, the supported accelerators in compilers have been limited to either 
GPGPUs or Intel Xeon PHIs. Our belief is that OpenMP can be used to drive parallel hardware 
generation. Most of the existing OpenMP infrastructure is general enough to allow this.

There are a few things that OpenMP could have to better support High-Level Synthesis. Among 
these are ways for the user to specify other – non-IEEE compliant – floating point representations.

How exactly are you generating parallel hardware from OpenMP programs?

KTH Team:  We created a prototype tool-chain that automatically transforms OpenMP applications 
into specialized parallel hardware.

The hardware that we automatically generate consists of a master soft-core processor and a 
number of slaves called “OpenMP accelerators”. The master processor is thus general-purpose 
and is responsible for exposing parallelism and schedule them onto the OpenMP-accelerators, 
where they are executed.

Each OpenMP accelerator contains a number of what we call “hyper-tasks”. A hyper-task is a 
processing element that specializes in performing a certain computation. In fact, the hyper-task 
is created such that it is only capable of executing a certain computation. Unlike general purpose 
processors, the hyper-task will only contain logic that is crucial for the computation – it will be 
void of functionality such as TLBs, large physical registers or out-of-order logic. Instead, we 
decide at compile time how many registers a hyper-task will have and statically schedule the 
instructions onto a finite state machine. The real-world analogy here would that if you have a 
stop in your sewer pipes you would call a plumber and not a baker – the plumber is specialized 
at fixing the sewer pipes and do so most effectively.

Each OpenMP accelerator contains many such hyper-tasks, which can share certain hardware 
units between them. The ability to share resource is crucial as many resources are very area-
expensive to implement on the FPGA. For example, a floating pointer adder is a costly resource 
that – if sparsely in the application – should be shared across as many hyper-tasks as possible. 
The real-world analogy would be that most people own their own mug at work while sharing the 
coffee machine.

Most parameters such as the number of hyper-tasks per accelerator, the number of accelerators 
and the internal mapping of instructions to hardware is solved using constraint programming 
approach, which means that we fully model the problem and time alone dictates how good the 
solution will be – our methodology generates better hardware with future systems.
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:  Initially, the user provides our prototype tool-chain with an OpenMP application written in 
the C programming language (we do not support C++). Our tool will parse and understand 
this application and divide it into two categories: software-based and hardware-based. More 
specifically, we divide everything related to parallel computation (more specifically, OpenMP 
tasks) into hardware-based and everything related to exposure and management of parallelism 
in software-based.

Following the said classification, the hardware-generation step begins. We extract the 
computational part of the application and transform them into a less-abstract format (the so-
called intermediate representation) and perform some standard optimizations on it.

Once the computation parts have been optimized, we create a constraint programming model 
that solves all variables related to the hardware generation. This includes how each instruction is 
mapped to the hardware hyper-task, how many of each resources we need and whether they are 
to be shared inside an accelerator or not. We also solve how many hyper-tasks each accelerator 
contains.

When all parameters have been solved we generate the entire system. This primarily glues 
together all accelerators through a shared interconnect (Altera Avalon) together with various 
peripherals and a general purpose processor. We also create a unique memory map for the 
System-on-Chip, which states where in the memory each device is located. A memory-map is 
essentially a map of addresses where the different peripherals and accelerators can be found. 
This memory-map is used in the next phase: source-to-source compilation.

Source-to-source compilation changes all OpenMP-specific directives into using the underlying 
OpenMP runtime-system. In our case, it is crucial that this phase comes after  the hardware 
has been generated, because both the runtime-system and parts of the translated application 
requires knowledge about the hardware (e.g. number of accelerators, memory map etc.). The 
output is a translated C source code that is to be used with the general-purpose processor in the 
system.

Finally, the application source code is compiled and the generated hardware is synthesized, 
technology mapped and place and routed to yield a bit-stream. This bit-stream is used to program 
the FPGA and the user can start using the enhanced OpenMP-accelerated application.

In your conclusions section you say that a main limitation is that you’re not modeling the memory 
hierarchy. Please explain this limitation and what you might do in the future.

KTH Team: One of the main limitations of our work is that we do not take memory hierarchies 
into account when generating hardware. This includes everything starting from the hyper-task’s 
data request until it is satisfied. In our current work, the OpenMP accelerators do not have 
a cache and instead rely on hiding as-much of the memory latency as possible by executing 
concurrently.

One of the biggest challenges in encouraging people to use FPGAs is to reduce complexity. While 
adding a simple data-cache would have improved the performance of the accelerators, currently 
it would also have required the user to specify the details regarding the cache, which is what we 
are trying to avoid. Ideally, everything should be automatically derived and modelled, including 
caches and interconnect width.  Today, we do not model the memory.

Future work of ours focus on analyzing memory traces generated by the application offline in 
order to satisfy the bandwidth and latency requirements of the targeted application.

Whom do you expect to be most interested in this? Where do you think developments in this will 
eventually land and what needs to happen first?
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KTH Team: We believe that the traditionally embedded High-Level Synthesis marked is slowly 
moving towards the more general-purpose and even HPC communities. Field-Programmable 
Gate-Array technology can be more power-efficient with respect to CPUs or GPUs. The main 
focus should right now be to raise the level of abstraction of using FPGA for users.

Thus, the first prerequisite for mainstreaming FPGAs for general-purpose or high-performance 
computing will be too improve productivity through the use of high-level programming models 
such as OpenMP but also though the use of data-parallel languages mainly used for GPUs such 
as OpenCL. CUDA is not likely a candidate as it is too tied the Nvidia hardware.

The second aspect is performance. FPGAs can outperform general purpose CPU but have difficulty 
in beating GPUs. That is mainly because we are attempting to replicate the GPUs functionality 
within the FPGAs: we use similar memory hierarchy, similar techniques for hiding latency and – 
perhaps more importantly – we use the same representations for precision.

One opportunity is to move away from the IEEE standard mantissa/fraction settings for floating 
point precision, if the application does not require the full precision of the IEEE format. For 
example, if a user application requires a third of the precision provided by single precision, 
generating hardware with lesser precision will not only increase the overall peak performance 
of the system but also benefit data transfers (more numbers transmitted in the same time) and 
lower power consumption.

Even if we continue to use the IEEE floating point standard, then we can still improve performance 
by making the FPGA slightly more coarse-grained and introduce hard IP blocks dedicated for 
floating point performance. This would also increase the peak performance delivered by future 
FPGA and seem to be the route manufacturers are taking (e.g. Altera Stratix 10).

Leaving off the KTH team’s thoughts, in our own analysis of research for FPGAs in 2016, a 
larger wealth of new published results can be found on the software tuning/programming side 
for both the device stacks (compilers and tools) and application-specific programming than on 
the hardware itself. Efforts like those we interviewed KTH about are common as centers try to 
integrate FPGAs without all of the down-to-silicon expertise. We expect that in 2017 the trend 
of adding ever-higher level interfaces and hooks for common programming environments will 
continue.
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Chapter Seven 
The Future FPGA Market  
Now is the time where we pull together all of the things we have examined in this overview in 
terms of hardware, software, and end user developments for a broader look at the systems and 
device market for 2017 and beyond 

For those who marveled at the $16.7 billion deal Intel made  to acquire field programmable 
gate array maker, Altera, an equal number raised eyebrows at the estimate given by Intel CEO 
to announce the purchase that one-third of cloud workloads would take advantage of FPGA 
acceleration by 2020.

It is worthwhile to go back to this stunning assertion about the future applicability of FPGA 
technology at such grand scale with this in mind. For FPGA silicon that has found its sweet spot, 
until the last few years in particular, inside specialized datacenters for financial services, oil and 
gas, and of course, defense and embedded applications, this sudden rise to fame is striking. 
After all, it was not that long ago that Altera noted its total addressable market in the datacenter 
was somewhere in the $1 billion range.

So what does Intel see that completes the puzzle—that makes this hefty acquisition make sense 
from an addressable market perspective? We were able to get Altera to talk about how the 
market is shaping up for FPGAs, as well as how their perceptions about the total growth potential 
has shifted over time, especially when the chatter about programmable logic devices hit fever 
pitch just over a year ago when Microsoft made bold predictions about how FPGAs might power 
more applications beyond its Bing search and image recognition operations.

As Microsoft’s Technology and Research Group vice president, Harry Shum, told a crowd at the 
Ignite conference in May 2016, Microsoft wants to be ahead of the Moore’s Law curve before it 
rounds out and leaves it scrambling for more ways to deliver key services. This is not unlike how 
the other hyperscale companies are thinking either, with both Amazon and Facebook and others 
keep open minds about building increasingly heterogeneous machines.

Following success accelerating the Bing page ranking algorithms, his teams started to look to 
other services that could be similarly pushed with FPGAs, including machine learning and deep 
neural networks. “The aspiration,” Shum explained, “is that we will build this new fabric of 
programmable hardware to complement existing programmable software frameworks. And we 
will build that hardware to benefit a lot of our workloads, then open it up for third party and our 
own ecosystem as well.”

And so, bingo. No pun intended. It is this model of building new datacenters around software, 
which is of course, designed to be programmable—with hardware that is also programmable 
to expand a new range of services that are literally built for these devices. And it does not end 
with Microsoft. Presumably, Intel sees a big opportunity for FPGAs in cloud datacenters (even 
if a company like Google still sees them as too difficult to integrate into their workflows—and 
GPUs too, for that matter) if it can make sure to wrap a software ecosystem around them—
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 something that some clever companies (including that small company 
founded by Seymour Cray that has done some  very interesting 
work programmatically speaking) are doing beyond the OpenCL 
approaches vetted by Xilinx, Altera, and others.

Altera’s head of strategic markets, Mike Strickland, spoke with The 
Next Platform following the Intel deal and while of course he is on 
lockdown detail-wise (and much of the commentary from this point 
lies in what Intel will do with its newfound FPGA glory), he was able 
to offer some clarification about why companies like Intel are seeing 
a big future in what was once considered a “limited” marketplace (to 
the $1 billion point, anyway).

This is all a bit cryptic, but one can assume that FPGAs will not only 
be used for user-facing services, but for users to access, particularly 
in integrated form on its Azure cloud. And if that happens, it won’t be 
long before (if it doesn’t happen before) Amazon offers FPGA cloud 
offerings for key workloads. That is definitely not out of the range of 
possibility, either, since AWS was the first large public cloud provider 
to provide GPU computing instances and tend to stay ahead of the 
curve by offering the latest cloud-tuned high-end Xeons. This could 
also mean that companies like Microsoft, who have well-developed 
compilers and tools (think about OpenCL plus Visual Studio) can find 
ways to add meat to FPGA-based servers. Further, Microsoft has done 
a great job in showing some interesting systems  (with accessible 
OpenCompute designs that Hewlett-Packard, Dell, Quanta, and 
others can build) that show how to network FPGAs to talk to one 
another over SAS interconnects while the rest of the network handles 
other work, creating what is essentially two machines in one—all of 
which Microsoft released as a production concept last year. The point 
is, there are endless ways one could look at the potential for FPGA-
based datacenters and for the first time in a long time, we’re looking 
to Microsoft to show what might be next in the datacenter from both 
a hardware and software perspective.

This part is just informed speculation, of course. But with that massive 
of a cash deal, we have to believe that Intel knows something about 
the future of the datacenter. It’s no secret that most chip and system 
vendors see a more heterogeneous future ahead—but it would not 
surprise your friends here at The Next Platform  if at some point, 
Altera rival, Xilinx, gets snapped into the maws of another giant. 
And for purveyors of software that can play well with FPGA-laden 
systems, the time to market explosion, as much as can happen in 
this niche anyway, is probably right about now.

Speaking of the code, hooks for FPGAs (which as we’ve described 
previously, have a programming hurdle to cross), there may be some 
momentum there as well. Strickland pointed to the story of GPUs as 
a solid reference point on how a niche accelerator can build a robust 
software ecosystem around it, dramatically expanding its reach by 
reducing some of the complexity. And Altera is standing by OpenCL 
as the path to swim further into the mainstream.

“That projection 
about one-third of all 
nodes having FPGAs 
in cloud environments 
makes sense if you 
look at the migration 
from discrete to co-
packaged to integrated 
FPGAs that Intel talked 
about,” Strickland 
says, especially if you 
listen to what Microsoft 
had to say about 
extending FPGAs to their 
ecosystem partners and 
third parties.
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 “If you looked at FPGAs five years ago, Intel wouldn’t be interested 
if you had to do HDL programming for each use and customer. So 
yes, something changed in that time. One of the big breakthroughs, 
the biggest building block, is indeed OpenCL. It’s not everybody 
though, but it has come a long way.” Strickland continues, “If you 
look at what Nvidia did, they realized CUDA was too low-level so 
they advocated OpenACC. There’s no reason why something similar 
can’t be done as an extension of the work we’ve done on our OpenCL 
compiler. That has a front end that parses OpenCL but most of the 
heavy lifting is done at the backend of the compiler. There it does 
over 200 optimizations (external memory bandwidth, for example) 
and does things that would take an HDL programmer six months to 
do.” With that in place, he says that there is no reason why it’s not 
feasible to add higher-level front ends on the compiler, including 
OpenACC, OpenMP, and more.

The data and external memory interface management have come a 
long way over the last few years, Strickland says, and these are the 
core improvements that moved FPGAs and their OpenCL frame over 
the accessibility border—well past the type of low-level HDL work 
that gave FPGAs a bad rap usability-wise for a number of years

While Strickland would not explain in more detail how we went from 
the $1 billion total addressable market number in the datacenter 
to one third of all cloud datacenters by 2020 figure—and the 
mathematics on the Intel side continue to make eyes spin, there is 
no doubt that this is, as predicted before any of this blew up, the 
year of the FPGA.

According to the newest IEEE device roadmap, which seeks what 
lies beyond Moore’s Law architecture-wise for a wide range of critical 
workloads, others are considering similar questions. For some 
organizations, including the Global Semiconductor Alliance (GSA) 
and its member organizations, one answer to the post-Moore’s Law 
conundrum lies in pushing the future of open source hardware. 
While this can come with its own technical hurdles when compared 
to what the very few large chipmakers produce, the economics, once 
followed with the right support models to make such architectures 
viable in enterprise, will follow suit.

Let’s bring all of this back to those broader trends for compute (and 
acceleration) we have touched on throughout this book.

As Jerome Nadel, whose company, Rambus, sponsored a GSA 
recent report that looks to the  future of the industry1  with open 
source hardware at the base (as well as other approaches, including 
reprogrammable devices like FPGAs and custom ASICs) says, “The 
semiconductor industry is not growing; there has been unparalleled 
consolidation and money spent on acquisitions recently, and all of 
this is coming from the fact that this is a non-growth market. The 
industry is only reaping 1.5 percent of the billions in value it creates, 
so what we are asking is what alternative paths exist.”

Nadel, who works for GSA member company, Rambus, thinks that 
one potential route is to push the future of open source hardware. 

Although Moore’s Law is 
not technically dead yet, 
organizations from the 
IEEE to individual device 
makers are already 
thinking their way out of 
a box that has held the 
semiconductor industry 
neatly for decades. 
However, it turns out, 
that thought process 
is complicated just 
as much by technical 
challenges as it is by 
economic barriers. As 
one might imagine, this 
opens the door for FPGA 
adoption—at least in 
theory.
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 Hewlett-Packard Enterprise, Oracle, and others see value in RISC-V, 
but of course, there are other approaches that are trying to get a 
foothold, especially in the server market. The device and IoT market 
are awash in open source hardware options already, but for new 
devices to become adopted, this means a support angle needs to be 
firmed up, similar to what Red Hat did with Linux—a move that made 
Linux overall a more viable option in the enterprise datacenter.

Worldwide chip sales increased by nearly 50 percent during the last 
decade, with industry revenue peaking at $340 billion in 2014. While 
those might sound like dramatic growth figures, the numbers mask 
an even more important story that really started to play out last year. 
Gartner figures estimate that the worldwide chip sales went down 
1.9 percent in 2015, and the 2016 estimate shows only a slight, 
optimistic 1.4 percent increase. Further complicating the market is 
the increase in acquisitions and consolidations, driven by the fact 
that only a few can compete given extraordinarily high design and 
fabrication costs.

According to the GSA, “Chip design projects that once cost a few 
tens of millions of dollars a decade ago have climbed as much as 
$200 million. Growth in the number of IP blocks, use cases, and 
fuse configurations also create complex schedule risks and logistics 
challenges for chipmakers.” Further complicating the economics 
for would-be chipmakers is the fact that M&A activity went up 
significantly in 2015, “fueled in part by historically cheap financing 
that enabled more than $4 trillion of worldwide corporate deal 
making. Semiconductor M&A also reached unprecedented levels 
last year, with chip-sector deals worth a combined $117.1 billion 
announced. This figure is more than five times the $19.9 billion total 
value of transactions in 2014.”

As Nadel explains, “we find that investments in software continue to 
grow, but in microhardware, this is not the case. The margin erosion 
is severe, investments in the costs and design and fabrication are 
now so enormous that the notion of ‘build it once and reap the 
benefit’ is one that is not sustainable as costs go up and margins go 
so far down.” To counter this trend, he says, the only real options lie 
in custom ASIC and FPGAs, but more broadly in the future of open 
source hardware. 

The traditional business for FPGAs in storage and networking will 
continue to get a boost from new approaches, including NVME drives 
over Ethernet fabric and innovations in terms of the storage memory 
hierarchy. Gone are the days when simple DDR-based DIMMS are 
main memory pushed with hard drives for storage, so with SSD and 
non-volatile memory computing closer to the compute side, there 
are more segments of the network, storage, and compute side that 
can work in harmony with FPGA acceleration.

FPGAs have been important elements of many networking and 
storage systems where the volumes are not high enough to justify 
the creation and etching of a full-blow ASICs, and there has been 
decades of experimentation and niche use of FPGAs as either compute 

“As the time required to 
develop new generations 
of chips stretches from 
two years to two and 
a half, or longer, and 
the cost of new chip 
manufacturing plants 
soars to new heights, 
the fundamental 
economics of the 
industry are changing.”
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engines or as coprocessors for general purpose CPUs, particularly in the financial services and 
oil and gas industries. The obvious question is why is Intel, which has fought so hard to bring a 
certain level of homogeneity in the datacenter, now willing to spend so much money to acquire a 
company that makes FPGAs as well as hybrid ARM-FPGA devices? What is it that Altera has that 
Intel thinks it needs, and needs so badly, to make the largest acquisition in its history?

The short answer is a lot of things, and with what Altera brings to the table Intel is hedging 
its bets on the future of computing in the datacenter – meaning literally serving, storage, and 
switching – and perhaps in all manner of client devices, too. 

The first hedge that Intel is making with the Altera acquisition is that a certain portion of the 
compute environment that it more or less owns in the datacenter will shift from CPUs to FPGAs.

Intel plans to create a hybrid Atom-FPGA product aimed at the so-called Internet of Things 
telemetry market, and this will be a monolithic design as well, according to Krzanich; the company 
is right now examining whether it needs an interim Atom and FPGA product that shares a single 
package but are not etched on a single die.

Neither Krzanich nor Intel CFO Stacy Smith talked about how much of the CPU workload in the 
datacenter space they expected to see shift from CPUs to FPGAs over the coming years, but 
clearly the maturity of the software stack for programming FPGAs is now sufficient that Intel 
believes such a shift will inevitably happen. Rather than watch those compute cycles go to 
some other company, Intel is positioning itself to capture that revenue. Presumably the revenue 
opportunity is much larger than the current revenue stream from Altera, which had $1.9 billion 
in sales last year. (Intel’s own Data Center Group had $14.4 billion in sales, by comparison.)

The chart we did not see as part of the announcement of the Altera deal is what Intel’s datacenter 
business looks like if it does not buy Altera. Intel, as you might expect, wants to focus on how 
Altera expands its addressable market, which it no doubt does. But there seems little doubt 
that Intel expected for FPGAs to take a big bite out of its Xeon processor line, too, even if the 
company doesn’t want to talk about that explicitly. (It is significant, perhaps, in the image that 
Intel is using for the Altera acquisition, which is the featured image above, the company is 
showing generic racks where you can really tell what is inside.)

Krzanich said that the future monolithic Xeon-Stratix part would offer more than 2X the 
performance of the on-package hybrid CPU-FPGA parts it would start shipping in 2016, but 
what he did not say is that customers using FPGAs today can see 10X to 100X increases in the 
acceleration of their workloads compared to running them on CPUs. Every one of those FPGAs 
represents a lot of Xeons that will not get sold, just as is the case in hybrid CPU-GPU machines. 
(In the largest parallel hybrid supercomputers, there is generally one CPU per GPU, so you might 
be thinking you only lose half, but the GPUs account for 90 percent of the raw compute capacity, 
so really a CPU-only machine of equivalent performance would have a factor of 10X more CPUs.) 
And exacerbating this compression of compute capacity is the fact that Intel will tie the FPGA to 
the Xeon and makes the combination even faster and with better performance per watt.

The other hedge is that Intel will be able to bring a certain level of customization to its Xeon and 
Atom product lines without having to provide customizations in the Xeon and Atom chips as it 
has been doing for the past several years to keep cloud builders, hyperscalers, and integrated 
system manufacturers happy. Rather than doing custom variants of the chips – in some cases, 
Intel has as many custom SKUs of a Xeon chip as it has in the standard product line – for each 
customer, Intel will no doubt suggest that custom instructions and the code that uses them can 
run in the FPGA half of a Xeon-Stratix hybrid. In some cases, those getting custom parts from 
Intel are designing chunks of the chip themselves, or they have third parties doing it, according 
to Krzanich.“This does give them a playground,” Krzanich said. 
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The final hedge that Intel is making is that it can learn a bit about making system-on-chip designs 
and can, if necessary, quickly ramp up an ARM processor business if and when 64-bit ARM chips 
from Broadcom (soon to be part of Avago Technology), Cavium Networks, Qualcomm, AMD, and 
Applied Micro take off in the datacenter. In its press release announcing the Altera deal, Intel 
said that it would operate Altera as a separate business unit and that it would continue to support 
and develop Altera’s ARM-based system-on-chip products; on the call, Krzanich said that Intel 
was not interested in moving Altera’s existing Stratix FPGAs and Arria ARM-FPGA hybrids to its 
fabs and was happy to leave them at Taiwan Semiconductor Manufacturing Corp.

We will be doing some more analysis of the implications of this Altera deal for future systems 
and their applications. Stay tuned. And don’t be surprised if Avago, which is in the process of 
acquiring Broadcom for a stunning $37 billion, starts looking real hard at FPGA maker Xilinx.

For device manufacturers, most notably Intel, the integration story gets interesting—and is 
lighting a fire among other FPGA makers, including Altera rival, Xilinx. 

From the relatively recent Intel acquisition of Altera by chip giant Intel, to less talked-about 
advancements on the programming front (OpenCL progress, advancements in both hardware 
and software from FPGA competitor to Intel/Altera, Xilinx) and of course, consistent competition 
for the compute acceleration market from GPUs, which dominate the coprocessor market for now

At the 2016 Open Compute Summit we finally got a glimpse of one of the many ways FPGAs 
might fit into the hyperscale ecosystem with an announcement that Intel will be working on 
future OCP designs featuring an integrated FPGA and Xeon chip. Unlike what many expected, the 
CPU mate will not be a Xeon D, but rather a proper Broadwell EP. As seen below, this appears to 
be a 15-core part (Intel did not confirm, but their diagram makes counting rather easy) matched 
with the Altera Arria 10 GX FPGAs.

This is not a first look at what many expect in the future, which is an FPGA and CPU on a single 
die—these are in the same package (two chips side by side on a single socket), which begs the 
question of how the Xeon and FPGA are connected, although one might make a reasonable guess 
at the same Quick Path Interconnect (QPI) links that are used to link multiple CPUs together so 
they can share memory and work. Intel is not prepared to comment on that yet, but they are 
bolstering one of the most important pieces of this story together now, which is on the software 
and programmability front.

According to Intel’s lead for accelerated computing, Eoin McConnell, this configuration created 
the best balance between CPU and FPGA performance but what is really needed now are the 
requisite libraries and programming tools to begin to build out a richer ecosystem. Although the 
hardware story is compelling, the more important bit here is that Intel is boosting its own library 
prowess for the future of its FPGA hybrids. For instance, as Jason Waxman described at the 
Open Compute Summit, there is a set of RTL libraries they are working on now and sending to 
the community for input. The goal is to create this library collection so that users can, in theory 
anyway, take their FPGA and suddenly have an SSL encryption accelerator or a machine learning 
library accelerator—all on the fly and with the ability to tweak and tune.

This capability is nothing new, of course. Some companies, including Convey Computing a couple 
of years ago took the same concept and gave their systems “personalities” that were tunable 
through libraries and sold as a system versus libraries. It is possible that Intel may, in the future, 
package such libraries up for distribution and have a business around this to complement their 
FPGA-CPU chips, although of course, like everything in FPGA land, that remains to be seen.

As for the FPGA libraries Intel is developing into a suite for their forthcoming FPGA push, they 
“will help users accelerate their workloads and give developers a platform to start with. With 
the these libraries, we’ve looked at a range of different acceleration demands and end user 
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 demands to put together a suite. We can’t say what all is in it yet, but 
expect a range of standard acceleration for a number of segments, 
including cloud, networking and traditional enterprise,” McConnell 
says. “The goal is to provide the right suites to help people use the 
FPGAs now for things like compression, encryption, and visualization 
and we’re continuing to work with Altera and what we now call the 
Programmable Solutions Group to look at other use cases.”

As we lead into the 2017 timeframe when the Broadwell EP/FPGA 
hybrids become available, there will be other work going on to 
bolster the programmability and tooling for similar devices, including 
(our guess) a Xeon D-matched part. McConnell says Intel is getting 
a great deal of interest in what they might be able to do for a range 
of applications where we see FPGAs already—and some new areas, 
including machine learning.

There will continue to be a story for an Intel as well as ARM for 
system vendors, but we should also mention another very important 
company in the future of FPGAs—and that is IBM. The company 
has put a great deal of its acceleration focus on GPUs and the 
right interconnects to offer high performance, but reconfigurable 
computing is not off Big Blue’s radar.

IBM did not just stake the future of its Power chip and the systems 
business on which it depends on the OpenPower Foundation, a 
consortium now with 160 members after more than two years of 
cultivation by Big Blue and its key early partners – Google, Nvidia, 
Mellanox Technologies, and Tyan. It has staked its future in the 
systems business on the idea of accelerated computing, which means 
using a mix of processors and accelerators to maximum performance 
and minimize costs and thermals for specific workloads.

It is hard to argue that the future of computing in the datacenter 
is moving away from general purpose processors and systems 
(perhaps with the exception of hyperscalers, who need homogeneity 
to keep the acquisition and operation costs low so they can grow 
their customer bases and services) to more specialized gear. Look at 
how many different kinds and types of processors that Intel sells just 
to see the diversity, which is about to be expanded with Altera FPGAs 
once Intel completes the $16.7 billion acquisition of that chip maker.

In the OpenPower camp, IBM and Nvidia have been tag teaming 
with hybrid computing for a while, with the big wins being the future 
“Summit” and “Sierra” supercomputers that the U.S. Department 
of Energy is spending $325 million to build for Oak Ridge National 
Laboratory and Lawrence Livermore National Lab, respectively. These 
are pre-exascale systems based on the future Power9 chips from 
IBM lashed to the future “Volta” Tesla GPU coprocessors from Nvidia, 
with the CPUs and GPUs linked by NVLink high-speed interconnects 
and the resulting hybrid nodes linked by EDR InfiniBand (or perhaps 
HDR if it gets completed in time).

Naturally and predictably, in the wake of the Intel-Altera deal, Xilinx 
is becoming an important member of the OpenPower compute 
platform and at the has announced a strategic collaboration with IBM 

“With every generation 
– and it is becoming 
more and more 
interesting math – we 
move functions and 
accelerators onto the 
chips. With each of our 
chips, we go through 
a longer and longer 
list of special purpose 
accelerators. When 
is it going to be that 
the math will be right 
to pull in a general 
purpose programmable 
accelerator onto 
the chip? Is it at 7 
nanometers or 3 
nanometers when that is 
going to happen? I don’t 
know just yet.”
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under the auspices of the OpenPower Foundation to more tightly couple its FPGAs with Power 
processors and ultimately Nvidia GPUs where that is appropriate. This multi-faceted hybrid 
computing is something that we expected, and we said as much back in March 2016 when we 
attended the first OpenPower Summit in Silicon Valley, and in fact, we used the high frequency 
trading applications from Algo-Logic, which bring all three technologies together, as an example 
of how this could work.

John Lockwood, CEO at Algo-Logic, summed it up this way: FPGAs are deployed where you 
need low latency on transactions, GPUs are used where you need high throughput calculations 
for the parts of the application components that can be parallelized, and CPUs are used for 
those portions of the code need fast execution on single threads. The trick is making it all work 
together to accelerate the entire application. This is not as simple as buying a custom processor 
as any type, but the OpenPower partners think the arguments are compelling for this approach. 
Compelling enough for IBM to sell off its System x business and essentially stake its system 
future on the idea.

The question we had when being briefed about the OpenPower announcements at the 
Supercomputing Conference was this: When does accelerated computing become normal? And 
then we thought about a future where all of this technology – CPU, GPU, and FPGA – might end 
up in a single package or on a single die anyway as Moore’s Law progresses for the next decade 
or so.

Brad McCredie, who is vice president Power Systems development at IBM and president of 
the OpenPower Foundation, offers his ideas on these issues and when everything that can be 
accelerated is accelerated.

“I think what that comes down to is predicting a rate of change in software,” McCredie explains. 
“That is going to be the gate to the timeline that you are thinking about. We see that these 
transitions do take five to ten years for software to migrate, but I do think that is an end state 
and people may choose to debate that with me. I think we will see that accelerated computing 
will be the norm and that software will be developed that way. Of course we are going to build 
lots of tools and aids to make it easier and easier to use these hybrid architectures. But this is 
going to be the new normal and we are going there.”

With Intel already having integrated GPUs on selected Xeon processors (both on-package and 
on-die variations), and talking about how it will have in-package and eventually on-die FPGA 
accelerators on selected members of the Xeon family, it is natural enough to ask if the OpenPower 
partners will ever work together to create various integrated CPU-FPGA or CPU-GPU or even CPU-
GPU-FPGA hybrid chips. There may be some technical barriers to this that need to be hurdled, of 
course, but it is not a ridiculous thing to contemplate – particularly as Moore’s Law starts running 
out of gas. Here is what McCredie had to say about that:

“With every generation – and it is becoming more and more interesting math – we move functions 
and accelerators onto the chips. With each of our chips, we go through a longer and longer list of 
special purpose accelerators. When is it going to be that the math will be right to pull in a general 
purpose programmable accelerator onto the chip? Is it at 7 nanometers or 3 nanometers when 
that is going to happen? I don’t know just yet. The one thing that I would point out is that as we 
are getting more and more out of the accelerators, the truth is the amount of silicon in a system 
that is being devoted to accelerators is outstripping CPUs in many cases. So maybe these things 
are going to stay separate for quite a while, only because we are just going to add more and 
more silicon into the system to get the job done as Moore’s Law slows down. When that happens, 
the corollary is that you need more square millimeters of silicon to get the job done.”

As we have pointed out a number of times in 2016 (and before) at The Next Platform, one could 
make an argument for a central processor complex comprised of CPU cores with fast single-
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thread performance that have had their vector math units ripped out that is coupled to an on-
package GPU and FPGA. But McCredie pushed back on that idea.

“The idea is absolutely not stupid, and these are trajectories that we could go on,” says McCredie. 
“But for several generations, right now where we are sitting in the industry, as far as scaling 
and performance goes, the investment is key is in the bus and the communication between the 
processor and the accelerators. This is where the differentiation is going to take place. We need 
a lot of silicon to do the processor and the accelerators, and no one is saying that they need less 
CPU or less acceleration. We see demand for more of both, and so need to get better and much 
more efficient communication between these components.”

For OpenPower, that means a few different things. First, it means embracing and enhancing the 
Coherent Accelerator Processor Interface (CAPI) that is part of the Power8 chip and that allows 
for coherent memory access between the Power8 processor and accelerators that link over the 
PCI-Express bus in the system. As part of the multi-year agreement between IBM and Xilinx, 
the two will be working on CAPI integration for Xilinx FPGAs, the SDAccel programming stack 
for FPGAs will be ported to Power processors and optimized for the combination, and Xilinx 
roadmaps will be aligned with the combined roadmap from the OpenPower partners so compute 
and networking in their various forms in these hybrid machines move together in unison and at a 
predictable pace. The Xilinx-IBM agreement also includes joint marketing and sales efforts, too.

The important thing to note is that the Power8+ chip due in 2016 will have both NVLink ports for 
boosting the bandwidth and lowering the latency between Power chips and “Pascal” GP100 Tesla 
coprocessors as well as the existing CAPI links for talking to other kinds of accelerators such as 
FPGAs.

In 2017, IBM will move to the Power9 processors and both CAPI and NVLink will be enhanced 
to create the foundational technology for the Summit and Sierra systems for the Department of 
Energy; the enhanced NVLink will be used to hook the Power9 chips to the “Volta” GV100 Tesla 
coprocessors. The roadmap calls for HDR InfiniBand and matching adapters running at 200 Gb/
sec linking the hybrid nodes to each other. The precise generations for Xilinx chips is not clear 
yet – they just inked the deal, after all. At the moment, IBM and FPGA partners (including Altera 
and Xilinx) have been able to create a CAPI-enabled PCI-Express port on the FPGA out of logic 
gates on the FPGA itself, which is something you cannot do with other chips because they are 
not malleable like FPGAs. In a future generation, the CAPI bus will be made more robust, says 
McCredie, and will be “pulled away from being 100 percent tied to PCI-Express,” as he put it. 
Xilinx will align with this enhanced CAPI bus, but don’t expect for Nvidia Tesla GPU coprocessors 
to use it. The rule is NVLink for GPUs, CAPI for everything else. (We suspect that Enhanced 
NVLink will have a maximum of eight ports per device instead of four and run at a higher clock 
speed that 20 GB/sec that the original NVLink has. Oh, and the Power9 chip will have a new 
microarchitecture and use a new chip process (14 nanometers) at the same time, by the way.

This is a lot of change, but that is precisely what the OpenPower partners have signed up for to 
chase exascale computing.

IBM is also talking about its own use of Tesla K80 accelerators on two-socket “Firestone” systems 
that underpin its Watson cognitive computing stack. McCredie tells The Next Platform that IBM is 
accelerating various deep learning algorithms in the Watson stack using the Tesla GPUs, and as 
proof points IBM says that the Retrieve and Rank APIs in the Watson stack have been accelerated 
by a factor of 1.7X and on natural language processing jobs the performance has been goosed 
by a factor of 10X. McCredie said that IBM had not yet deployed either the Tesla M4 or Tesla M40 
GPU accelerators, announced last week by Nvidia, underneath Watson, but that given their aim 
at machine learning, he expected that IBM would give them consideration.
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To help more customers make the move, the SuperVessel Power cloud that IBM set up in China 
earlier in 2016 has expanded GPU and FPGA acceleration, and IBM’s own centers in Poughkeepsie, 
New York and Montpelier, France have been beefed up, too. And of course, Oak Ridge and 
Lawrence Livermore will be doing development work on hybrid Power-GPU setups, too.

The wins for Power-Tesla hybrid computing and the test beds for Power-FPGA computing have 
been documented in The Next Platform, and what we wanted to know is how the uptake is going 
outside of these HPC labs and the oil and gas industry where this idea was originally rejected 
and then took off. Rice University, Baylor University, Oregon State, and the University of Texas 
all have hybrid clusters for doing research, and Louisiana State University is doing on with FPGA 
accelerated Power clusters. McCredie says that there are examples of companies doing network 
function virtualization and running other workloads underway at telecommunication firms and 
service providers, and that eight big proofs of concept are underway in various large enterprise 
accounts.

The reason is simple: Like Google, they have to beat Moore’s Law, any way that they can. That 
is why Google was a founding member of the OpenPower Foundation, after all. 

One aspect of the market that we will continue to watch is how smaller vendors tackle the 
market with FPGA-based systems that can abstract away some of the complexity and get full 
performance out of the newest reconfigurable devices. 

What is interesting, however, is that as this “old” 1980s technology has resurfaced over the last 
few years in the wake of new data-intensive problems, the performance has been bolstered, 
but the programmability problem persists, even with the work that has been done to tie FPGAs 
to more common approaches like OpenCL. But despite the barriers, FPGAs are exploiting new 
opportunities in data analytics, giving a second wind to an industry that seemed to languish on 
the financial services, military and oil and gas fringes.

Backed by Altera, Xilinx, Nallatech, and other vendors and with hooks into OpenPower, the gates 
have opened for FPGAs to prove their mettle in a host of new web-scale datacenter environments, 
including Microsoft for its Bing search service. And it’s this type of hyper-dense search, along 
with neural networks, deep learning, and other massive machine learning applications, where 
they stand to shine. But again, back to reality, while the core value of FPGAs is that they are 
reconfigurable on the fly, this is also an Achilles heel, programmatically speaking. No matter how 
robust, high performance, and low power, if they cannot be programmed without specialized 
staff, what’s the point? Now, with  Intel/Altera, and momentum in the OpenPower sphere to 
bring FPGAs to a wider market, the impetus is greater than ever to make FPGAs available 
programmatically. But there could be a way of wrapping around that problem, at least for some 
algorithms.

Before we get to that, the Bing example along with the other financial and energy exploration 
codes where FPGAs have historically been found all share something else in common. The FPGAs 
are tied to a traditional sequential X86 processing environment that is based on clustering for 
scale and added performance. Further, the addition of FPGAs, while adding performance for 
specific problems, adds additional programming complexity, With this in mind, it’s not difficult 
to imagine building a supercomputer from these FPGAs, but according to Patrick McGarry, VP of 
engineering at FPGA-based data analytics server maker, Ryft, one of the main goals is to move 
away from both an X86 and clustering mindset and make the FPGA the analytics workhorse. And 
what’s notable here is that they may have made the programmability leap.

“We set out to design a 1U box that could minimize or even eliminate the need for clustering 
for the majority of an enterprise’s analytics problems,” explained McGarry. The Ryft ONE boxes 
his company makes look like a network appliance from the outside, but are outfitted with a X86 
processor running Linux with no special software mojo other than the drivers for the FPGA. As a 
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 side note, the company ran a series of internal benchmarks on both 
Altera and Xilinx FPGAs and found that Xilinx was the clear winner for 
their specific needs based on how quickly it could be reconfigured. 
McGarry said they tested a few others, but their work with Xilinx 
has allowed to do something very interesting indeed—to develop a 
custom interconnect, which is their secret sauce, that allows for some 
pretty impressive results (at least based on their own benchmarks). 
“Xilinx does not know what we are putting in their FPGAs. It’s the 
interconnect, the logic, and how we’re passing data. There is no 
third-party interface or development platform that can do what we 
did, they’ve been a great partner but this is all a unique approach.”

So what we have here is an FPGA-based system where the host 
processor handles basic tasks, allowing the FPGA to exclusively 
handle the bulk of the processing–all the while minimizing data 
movement, even when compared to how the fastest in-memory 
analytics approaches do so (Spark for instance).  The numbers below 
are done within a 700 watt power envelope for the entire box. The 
efficiencies come in part from the FPGA, but this device is also the 
way the Ryft ONE it cuts down on data movement.

“Current large-cluster solutions using tools like Hadoop and Spark 
require an inordinate amount of ETL (extract, transform, and load) 
work.  This often artificially inflates the size of the data significantly.  
And making matters worse, users are often forced to index the 
data to be able to effectively search it, which can further artificially 
inflate the data set size.  (Not to mention the amount of time it takes 
to do those things – days and weeks in some cases, especially if 
multiple indexes are required.) With the Ryft ONE, you can analyze 
data in its rawest form,” McGarry highlighted. “You aren’t required 
to ETL or index it.  That’s a huge differentiator.  If you want to add 
some structure for your own purposes, you are certainly more than 
welcome (such as perhaps XML, or something along those lines), but 
it is by no means a requirement.”

If your core business is machine learning, certain types of search 
functions, or in coming months, image and video processing, this 
might be of interest. And while you can still make use of that 
unnamed but Intel “high performance” X86 processor inside and 
offload things to the FPGA on board, you could, but it would be a 
damned expensive way to do things (these are sold as hosted/on-
prem rentals with an $80,000 configuration fee and $120,000 per 
year license that includes all updates, new primitives, etc.).

But of course, back the big question here—the efficiencies can be 
benchmarked in theory, but how do you actually program the thing, 
especially since this is one of the limiting factors for broader FPGA 
adoption? And further, how is it this small company claims to have 
figured out the secret to making FPGAs simple to program and use 
when the largest makers and their communities haven’t solved this 
problem?

The answer brings us back to the fact that this is, at its simplest, 
an appliance. It comes with “precooked” ways of handling a select 

“Today’s sequential 
processing systems are 
forced to cluster in order 
to scale to the needs of 
the target community, 
which in turn, hampers 
performance.”
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set of highly valuable data analytics problems. But as McGarry added, the API Ryft is using is 
open (available on its site) and based on C, which means in theory, it’s possible to wrap almost 
any programming language in the world around it since many (Java, Scala, Python, etc) can all 
invoke C. The idea then is that the only thing required to use the FPGA is to make a high level 
function call—you call the routine and it’s there. “We tried to abstract away everything possible 
and by doing it this way, you don’t even need to know how to spell FPGA, and it also makes it 
easier on our end because we don’t have to support all of the other tools (visualization, etc), you 
can just write it. Our box is for performance purely.”

So with these potential advantages in mind in terms of programmability and performance, how 
can such systems—which again, were not built with traditional clustering and scalability in mind—
still scale? The target workloads require processing of around 10TB on average, which is one of 
the reasons they decided to natively support up to 48TB in the 1U Ryft ONE. While it’s possible to 
do that across multiple systems, overstocking the machine means most of their users will never 
need to, in theory at least.

And even with all the data processing capability in the world, it’s meaningless without a way to 
move the data. The Ryft boxes have two 10 Gb/sec Ethernet ports that can be used for arbitrary 
data ingress and egress. “Since our analytics performance in our backend analytics fabric is on 
the order of 10 gigabytes per second, we can easily handle line rate 10 gigabit Ethernet (since 
using 8B10B encoding, that translates to only one gigabyte per second) – with room to spare. 
This means that should the market decide that we need higher network interface speeds, we can 
make that happen with a minimal amount of re-engineering.”

In terms of scaling beyond this, McGarry says that if a user needs more than the 48TB for data 
at rest, and more than two 10 Gb/sec network links, then you could utilize multiple Ryft boxes 
to scale. “However,” he notes, “you wouldn’t use them in what you traditionally think of as a 
‘cluster’.  You would instead implement a data sharding approach, determining which of the two 
(or more) Ryft ONE boxes you’d send the data for processing.”

Other companies dipped an early toe in the FPGA box waters, including high performance 
computing server maker, Convey, which did something similar for a select set of workloads. As 
OpenPower continues its development, we can expect a new crop of FPGA-powered systems 
to emerge. Further, if indeed it’s true that Intel will be buying Altera, one can only guess what 
lies on the horizon, but for now, we’ll wait in the wings for a user story to emerge from Ryft to 
provide some much-needed real-world insight.

Other companies that see the writing on the wall for the future of FPGAs include those that 
monitor the performance differences between existing and future general purpose processors 
and accelerators and try to tack FPGAs on for additional boost without the complexity.

Nallatech doesn’t make FPGAs, but it does have several decades of experience turning FPGAs 
into devices and systems that companies can deploy to solve real-world computing problems 
without having to do the systems integration work themselves.

With the formerly independent Altera, now part of Intel, shipping its Arria 10 FPGAs, Nallatech 
has engineered a new coprocessor card that will allow FPGAs to keep pace with current and future 
Tesla GPU accelerators from Nvidia and “Knights Landing” Xeon Phi processors and coprocessors 
from Intel. The architectures of the devices share some similarities, and that is no accident 
because all HPC applications are looking to increase memory bandwidth and find the right mix of 
compute, memory capacity, and memory bandwidth to provide efficient performance on parallel 
applications.

Like the Knights Landing Xeon Phi, the new 510T uses a mix of standard DDR4 and Hybrid 
Memory Cube (HMC) memory to provide a mix of high bandwidth, low capacity memory with 
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high capacity, relatively low bandwidth memory to give an overall performance profile that is 
better than a mix of FPGAs and plain DDR4 together on the same card.

In the case of the 510T card from Nallatech, the compute element is a pair of Altera Arria 10 
GX 1150 FPGAs, which are etched in 20 nanometer processes from foundry partner Taiwan 
Semiconductor Manufacturing Corp. The higher-end Stratix 10 FPGAs are made using Intel’s 14 
nanometer processes and pack a lot more punch with up to 10 teraflops per device, but they are 
not available yet. Nallatech is creating coprocessors that will use these future FPGAs. But for a lot 
of workloads, as Nallatech president and founder Allan Cantle explains to The Next Platform, the 
compute is not as much of an issue as memory bandwidth to feed that compute. Every workload 
is different, so that is no disrespect to the Stratix 10 devices, but rather a reflection of the key 
oil and gas customers that Nallatech engaged with to create the 510T card.

“In reality, these seismic migration algorithms need huge amounts of compute, but fundamentally, 
they are streaming algorithms and they are memory bound,” says Cantle. “When we looked at 
this for one of our customers, who was using Tesla K80 GPU accelerators, somewhere between 
5 percent and 10 percent of the available floating point performance was actually being used 
and 100 percent of the memory bandwidth was consumed. That Tesla K80 with dual GPUs has 
24 GB of memory and 480 GB/sec of aggregate memory bandwidth across those GPUs, and it 
has around 8.7 teraflops of peak single precision floating point capability. We have two Arria 
10s, which are rated at 1.5 teraflops each, which is just around 3 teraflops total but I think the 
practical upper limit is 2 teraflops., but that is just my personal take. But when you look at it, 
you only need 400 gigaflops to 800 gigaflops, making very efficient use of the FPGA’s available 
flops, which you cannot do on a GPU.”

The issue, says Cantle, is that the way the GPU implements the streaming algorithm at the heart 
of the seismic migration application that is used to find oil buried underground, it makes many 
accesses to the GDDR5 memory in the GPU card, which is what is burning up all of the memory 
bandwidth. “The GPU consumes its memory bandwidth quite quickly because you have to come 
off chip the way the math is done,” Cantle continues. “The opportunity with the FPGA is to make 
this into a very deep pipeline and to minimize the amount of time you go into global memory.”

The trick that Nallatech is using is putting a block of HMC memory between the two FPGAs on 
the board, which is a fast, shared memory space that the two FPGAs can actually share and 
address at the same time. The 510T is one of the first compute devices (rather than networking 
or storage devices) that is implementing HMC memory, which has been co-developed by Micron 
Technology and Intel, and it is using the second generation of HMC to be precise. (Nallatech 
did explore first generation HMC memory on FPGA accelerators for unspecified government 
customers, but this was not commercially available as the 510T card is.)

In addition to memory bandwidth bottlenecks, seismic applications used in the oil and gas 
industry also have memory capacity issues. The larger the memory that the compute has access 
to, the larger the volume (higher number of frequencies) that the seismic simulation can run. 
With the memory limit on a single GPU, says Cantle, this particular customer was limited to 
approximately 800 volumes (it is actually a cube). Oil and gas customers would love to be able 
to do 4K volumes (again cubed), but that would require about 2 TB of memory to do.

So the 510T card has four ports of DDR4 main memory to supply capacity to store more data to 
do the larger and more complex seismic analysis, and by ganging up 16 cards together across 
hybrid CPU-FPGA nodes, Nallatech can break through that 4K volumes barrier and reach the 
level of performance that oil and gas companies are looking for.
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The HMC memory comes in 2 GB capacity, with 4 GB being optional, and has separate read and 
write ports, each of which deliver 30 GB/sec of peak bandwidth per FPGA on the card. The four 
ports of DDR4 memory that link to the other side of the FPGAs deliver 32 GB of capacity per 
FPGA (with an option of 64 GB per FPGA) and 85 GB/sec of peak bandwidth. So each card has 
290 GB/sec of aggregate bandwidth and 132 GB of memory for the applications to play in.

These FPGA cards slide into a PCI-Express x16 slot, and in fact, Nallatech has worked with server 
maker Dell to put these into a custom, high-end server that can put four of these cards and 
two Xeon E5 processors into a single 1U rack-mounted server. The Nallatech 510T cards cost 
$13,000 each at list price, and the cost of a server with four of these plus an OpenCL software 
development kit and the Altera Quartus Prime Pro FPGA design software added to is $60,000.

Speaking very generally, the two-FPGA card can deliver about 1.3X the performance of the Tesla 
K80 running the seismic codes at this oil and gas customer in about half the power envelope, 
says Cantle and there is a potential upside of 10X performance for customers that have larger 
volume datasets or who are prepared to optimize their algorithms to leverage the strengths of 
the FPGA. But Nallatech also knows that FPGAs are more difficult to program than GPUs at this 
point, and is being practical about the competitive positioning.

“At the end of the day, everyone needs to be a bit realistic here,” says Cantle. “In terms of price/
performance, FPGA cards do not sell in the volumes of GPU cards, so we hit a price/performance 
limit for these types of algorithms. The idea here is to prove that today’s FPGAs are competent 
at what GPUs are great at. For oil and gas customers, it makes sense for companies to weigh 
this up. Is it a slam dunk? I can’t say that. But if you are doing bit manipulation problems – 
compression, encryption, bioinformatics – it is a no brainer that the FPGA is far better – tens of 
times faster – than the GPU. There will be places where the FPGA will be a slam dunk, and with 
Intel’s purchase of Altera, their future is certainly bright.”

The thing we observe is that companies will have to not look just at raw compute but how their 
models can scale across the various memory in a compute element and across multiple elements 
lashed together inside of a node and across nodes.



82FPGA Frontiers: New Applications in Reconfigurable Computing

Conclusion

It would be far easier on the IT industry if Denard scaling and Moore’s Law improvements in 
the economics of chips had just continued apace through the end of the 2000s and into today. 
General purpose CPUs – and that generally means the X86 instruction set these days – would 
have reigned supreme and other architectures of processors and coprocessor would have been 
driven out of the market by volume economics and the homogeneity of the application and 
system software stacks.

But improvements in chip manufacturing processes are slowing, and that means that many things 
they were old, like FPGAs, are new again. To get the most efficiency, HPC centers, hyperscalers, 
and cloud builders have to look at every possible option to accelerate the performance of their 
applications – even those that are somewhat difficult to program, as the FPGA can be, even with 
modern tools to help bridge the gap between traditional programming languages such as C or 
C++ and the Verilog/VHDL language that describes the logic implemented on FPGAs that turns 
them from a pile of logic gates into a kind of hardware-software hybrid that has the benefits of 
both.

If there is a lesson from the modern era, where we are seeing a kind of Cambrian Explosion 
in the variety of types of compute elements in the datacenter, it is that compute monoculture, 
which has provided so many good benefits to end user companies (as well as X86 chip supplier, 
Intel), is not sustainable. A mix of compute types within a system as well as across systems 
running various parts of the application workflow is necessary to achieve the maximum efficiency 
and build the best possible system. The history of the FPGA and its relatively modest adoption in 
the enterprise is not necessarily indicative of the future adoption of FPGAs within future systems. 
We believe that FPGAs will find their place, just as GPUs have, alongside CPUs in hybrid systems, 
and for the same reason that network devices have had a mix of ASICs and FPGAs for a long time 
(and many even have general-purpose CPUs to run network applications, too).

There are many reasons why we believe FPGAs will see broader and deeper adoption, but 
perhaps one of the most important reasons is that they are malleable hardware, a kind of device 
that is somewhere between an ASIC that does one and only one thing and a CPU that can be 
programmed to do anything but which has a fairly deep software stack that needs to be kept up. 
Ironically, this malleability is something that FPGA makers like Xilinx and Altera tried to downplay 
in the early days of the commercialization of these devices. FPGAs, thanks to their relatively low 
volumes, are also ideal testbeds for new chip making technologies. 

As making smaller and smaller circuits to drive capacity improvements on CPUs gets increasingly 
difficult because we are approaching the limits of physics with CMOS technology, there will 
perhaps be more importance placed on creating systems that are based at least in part on FPGAs 
and that will themselves be more malleable but also be more precise than a CPU, which needs 
software to tell it how to behave, becomes harder and harder. 



83FPGA Frontiers: New Applications in Reconfigurable Computing

While it would be interesting to live in a world where FPGAs killed off CPUs and GPUs for compute, 
it seems unlikely that the Moore’s Law pressures are so great to push most applications off CPUs 
or GPUs and onto FPGAs. But some applications will make that jump, and in other cases, the 
offload model and the tools supporting it will allow for some portions of an application to be 
moved to FPGAs, and we think that is precisely what many companies will do. 
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